Fiber Optics Light switching, Light transportation, Light distribution

The Quality Connection

The Fiber Optics business unit of the LEONI Group is one of the leading suppliers of optical fiber technology for communication and for special applications in a host of industrial sectors as well as in science and medicine. As a vertically integrated business unit, we offer a unique product portfolio at every stage in the value chain.

This distinguishes us from other suppliers:

From preform production through cable manufacturing with different fibers, lengths, bundles, connectors and special plug systems to optical switches and splitters, we offer a unique portfolio comprising more than 8,000 products.

We bring together heterogeneous technologies for heterogeneous applications. The result: complete fiber optic systems. We manufacture products individually in series and piece production, just-in-time and quality assured. We develop the desired product design in accordance with the customers' individual requirements. We analyse our customers' requests, study the environment of the respective application and combine these insights with our know-how. We invest well over €1.5 million each year in research and development.

We're there for you, along with our 300 employees. The result speaks for itself...

Ph. Del

Andreas Weinert Philipp Dehn, Ph.D. Vice Presidents Fiber Optics

Fiber Connect[®] Light Guide Cable Solutions

We offer you cables with optical fibers made from glass (singlemode and multimode), plastic optical fibers (POF), plastic cladded fibers (PCF) and large-core fibers (silica/silica). All fiber types are also available in a radiation-resistant version. We manufacture different cable designs from central core cables to breakout cables with all buffered fiber types and specific inner and outer jacketing materials, customised according to your needs. We use all fiber types to produce hybrid cables with optical fibers and electrical conductors.

Fiber**Tech[®]** Special Optical Fiber Technologies

We manufacture multimode and singlemode fibers and fiber bundles with different numerical apertures, coatings and claddings. We specialise in special fibers and special coatings. Our company has four optical fiber drawing towers as well as corresponding screeners and extruders. All fibers can be assembled to the customer's specific needs for high-performance laser cables or, for example, spectroscopic applications. We manufacture medical fibers for laser energy transmission and also offer series production of surgical, ophthalmological, urological, dental and endovascular laser probes with biocompatible materials.

Fiber Switch[®] Light Switching for Optical Systems

Our fiber optical switches are based on a patented micromechanical/micro-optical design. This guarantees excellent properties, considerable flexibility and maximum long-term stability for many applications. The switches are available for wide wavelength ranges from the visible to the infrared and for a wide variety of fiber types. Our switches are designed for applications with the highest requirements in the telecommunications area, in measurement and testing and in the biomedical area. Examples of these complex applications include spectroscopy, laser scan microscopy, multi-channel optical performance monitoring, fiber Bragg sensors, testing of fiber optical cables and environmental trace analysis.

Fiber Split[®] Light Distribution for Optical Systems

Based on optical chip technology, the FiberSplit[®] product portfolio includes standard components such as 1xN or 2xN splitters as well as customised modules or systems with integrated complex functionality for fiber optical singlemode and multimode systems. FiberSplit[®] products guarantee expandability with wide optical bandwidth and maximum bit rates thanks to extremely low PDL/PMD. Our products meet TELCORDIA standards and have been failure-free in the field for the past 16 years. We also produce customer-specific chips, components and modules, for example optical waveguide structures for wavelength ranges between 600 and 1700 nm with various waveguide properties and functions including optical chips and fiber arrays.

Up-to-date information on LEONI Fiber Optics products, developments, research projects and trade fairs can also be found on the Internet:

www.leoni-fiber-optics.com

www.us-fibertech.com

Second extended and updated edition: November 2009

© LEONI Fiber Optics GmbH ISBN 978-3-00-029036-7

The contents of this catalogue are protected by copyright. They may only be used for private purposes. Any reproduction, presentation or transmission of the contents for commercial purposes is prohibited without the agreement of the copyright holder and is only permitted following prior approval. All rights reserved.

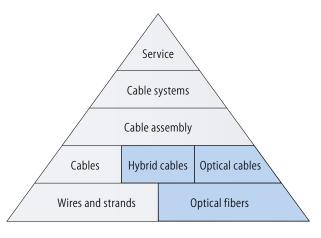
We reserve the right to make technical modifications, typographical errors and mistakes.

Note: LEONI guarantees that the delivery items contained in this catalogue exhibit the agreed quality upon the transfer of risk. This is measured exclusively according to the concrete agreements relating to the properties, features and performance characteristics of the respective delivery item concluded in writing between LEONI and the orderer. Illustrations and specifications in catalogues, price lists and other information material provided to the orderer by LEONI as well as product descriptions are only legally binding if they are explicitly identified as binding specifications. Under no circumstances should specifications of this type be taken as guarantees of the delivery item corresponding to a particular quality. Guarantees of quality of this type must be explicitly agreed in writing. LEONI reserves the right to modify the catalogue contents at any time.

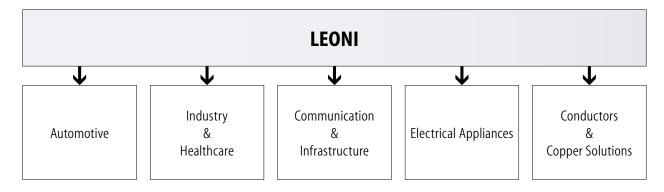
	Page	
Introduction Fiber optics	2	
Fiber Optic Cables singlemode/multimode fibers	6	
POF Polymer optical fibers	82	
PCF Polymer cladded fibers	110	
Large Core Special fibers – fused silica glass, sapphire, non-oxidic glasses	132	
Singlemode Special fibers	154	
Fiber Bundles Fused silica glass and optical glass	170	
Laser Probes Medical devices	180	
Tubes Fiber protection elements	192	
Optical Components Switches, splitters, arrays, probes	202	
Support Tools, measuring devices and accessories	230	
Principles of fiber optics	245	
Books Reference literature	298	
Service & Index	302	

LEONI Cable expertise for the most various industrial markets.

LEONI is a leading supplier of cable systems and related services for the automotive industry and various other industrial sectors.


Our group of companies employs more than 45,000 people in 34 countries. Corporate vision, highest quality and innovative power have made us one of the leading cable manufacturers in Europe. LEO-NI develops and produces technically sophisticated products ranging from wire and optical fibers to cables through to complete cable systems and also offers the related services. Moreover, the product portfolio comprises strands, standardised cables, hybrid cables, fiber optic cables as well as special cables, cable harnesses, wiring systems components and fully assembled systems for applications in various industrial markets.

Your markets – our strength


As diverse as our product and service range are the markets and sectors LEONI is supplying. We focus our activities on customers in the markets Automotive, Industry & Healthcare, Communication & Infrastructure, Electrical Appliances and Conductors & Copper Solutions. We are among the leading European suppliers in the Industry & Healthcare market to which at LEONI as a cable manufacturer also belong activities in the fields of aerospace, telecommunication systems, fiber optics, industrial solutions and healthcare. Customers of our Fiber Optics business unit benefit worldwide from innovative as well as reliable and long-lasting products of high quality.

LEONI – we create the best connection for your future.

Products and services portfolio at a glance

LEONI's core markets

Fiber Optics business unit

Our areas of expertise.

Cross-sectional technology and key technology

Optical technologies are innovative and in great demand in many markets. That is why fiber optic products are manufactured for a wide variety of industrial sectors for an equally wide array of applications.

In order to be able to persist in these markets and to give our customers a competitive edge, the Fiber Optics business unit stands for: Innovation

Quality Service

Process Control.

Our products and technologies epitomise market competence in the following sectors:

- Communications
 (wiring systems for buildings and industry)
- Energy (mining, wind, solar, nuclear, petroleum, utilities, high-voltage applications)
- Mechanical and Plant Engineering (drag chains)
- Automation and Robotics (Industrial Ethernet, bus systems, high -performance lasers for materials processing)
- Transportation Engineering (air and space travel, transport)
- Defense
 (system componen)
- Laser Technology (passive optical fibers for laser welding/laser treatment)
- Audio / Video / Multimedia
- Medicine and Life Sciences
 - (laser probes, endoscopic equipment)
- Sensor Technology / Analytics (colour, opacity and gas sensor technology, environmental engineering)
- Lighting Technology
- Naval and Maritime Engineering (steering control cables)
- Spectroscopy (chemical and food industries, astrophysics)
- Scientific Institutions

 (universities, research centres)

Value chain

- from the preform to the complete fiber optic system.

Design and development

- Development of customer-specific system solutions and prototypes
- Industrial research projects on materials science and technology development

Preform and fiber production

- Production of multimode fibers with a core diameter of 10 to 2000 μm
- Manufacturing of customer-specific IR and UV preforms

Fiber optic cable production

- Production from standard and self-drawn special fibers (glass, silica, POF, PCF)
- Hybrid cables with electrical and optical waveguides

Customised assembly and special components

- Assembly of fiber optical systems for applications in industry, medicine and science
- Manufacturing of planar optical fibers as optical splitters
- Manufacturing of fiber optical switches

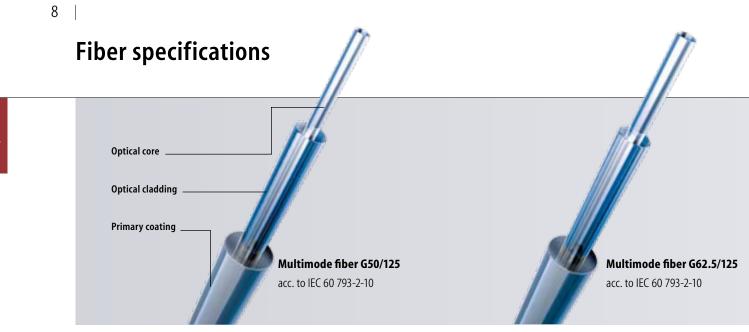
Our sites in Gemany

Seven sites in Germany

LEONI Fiber Optics GmbH, Neuhaus-Schierschnitz LEONI Fiber Optics GmbH, Roth LEONI Fiber Optics, Stromberg LEONI Fiber Optics GmbH, Jena LEONI Fiber Optics GmbH, Waghäusel LEONI Fiber Optics GmbH, Sonneberg FiberTech GmbH, Berlin

We are where you need us to be: Our sites and offices in Europe, Asia and North America can be found on page 308.

Fiber Optic Cables


singlemode/multimode fibers

Fast and trouble-free communications are taken for granted nowadays. The Fiber Optics business unit supplies customer-specific solutions for this purpose for a wide variety of requirements and applications (sensor technology, plant engineering, telecommunications and many more). Optical fibers provide the ideal solution for future-proof installations because they allow not only high rates of data transmission with extensive spare capacity, but also the highest possible degree of operating security.

Fiber Optic Cables singlemode/multimode fibers

Fiber specifications		8
Buffered optical fibers		10
The right buffered fiber for every app	lication	11
Handling and safety notices		12
Buffer tube and jacketing material		13
Type designations for optical cables		14
Fiber colour code for multi-fiber loos	a tubor	15
Standards	etubes	15
Pictograms		16
Industrial cables		17
FiberConnect® I-V(ZN)H 1	Simplex cable PUR	18
FiberConnect® I-V(ZN)11Y 1	Duplex cable PUR	19
FiberConnect® AT-V(ZN)H(ZN)B2YFR 2 2.1 mm	Breakout cable with rodent protection	20
LEONI U-DQ(ZN)11Y n	Mobile camera cable	
	(universal cable)	21
FiberConnect® AT-V(ZN)YY	with central loose tube Breakout cable	
	for drag chains	22
FiberConnect® AT-V(ZN)Y11Y	Breakout cable for drag chains, oil resistant	23
FiberConnect [®] HPF-FO-Cable n	High-performance flex flat cable	24
FiberConnect® B AT-W(ZN)YY Z	Profinet duplex indoor cable	25
FiberConnect® I-V(ZN)7Y 2G50/125	ETFE high-temperature cable	
TB9007Y 3.0 HAT 150	Duplex cable	26
FiberConnect® stainless steel conduit	Stainless steel conduit with optical fibers	27
x mm n FiberConnect® U-DQ(ZN)11Y n CJ	Central loose tube cable	
FiberConnect® 0-DQ(2N)1111CJ	with leak-proof, cross-linked gel	28
Office cables	with leak-plobi, closs-linked ger	29
FiberConnect® I-V(ZN)H 1	Simplex cable	30
FiberConnect® I-V(ZN)H 2x1	Duplex cable	31
	•	
FiberConnect® I-V(ZN)H n	Mini breakout cable	32
FiberConnect® I-V(ZN)HH 2x1	Breakout cable, flat	33
FiberConnect® I-V(ZN)HH n	Breakout cable	34
FiberConnect [®] I-D(ZN)BH n JF	Indoor cable with central,	36
FiberConnect® I-D(ZN)H nxm JF	gel-free loose tube Indoor cable with stranded.	_
	gel-free loose tubes	37
Outdoor cables		38
FiberConnect® U-D(ZN)BH n 2500 N	Universal cable with system integrity	39
FiberConnect® U-DQ(ZN)HWH n	Universal cable with system integrity	40
FiberConnect®	Rodent-protected universal cable U-VQ/	
ZN)BH n	with stranded tight buffered fibers	41
FiberConnect®	Rodent-protected universal cable	
U-DQ(ZN)BH n 1750 N	with stranded tight buffered fibers	42
FiberConnect®	(1750 N) Redent protected universal cable	
FiberConnect®	Rodent-protected universal cable	43
U-DQ(ZN)BH n 2500 N FiberConnect® U-DH nxm	with central loose tube (2500 N) Universal cable	
not connect o birnani	with stranded loose tubes	44
	Rodent-protected universal cable	
FiberConnect® U-DQ(ZN)BH nxm	nouent-protected universal cable	45

FiberConnect® U-DQ(ZN)(L)H n	Transversely waterproof universal cable with central loose tube	46
FiberConnect® U-DQ(ZN)HWH n	Rodent-secure, transversely waterproof universal cable with central loose tube	47
FiberConnect® U-DQ(ZN)(L)H nxm		48
FiberConnect® U-DQ(ZN)WH nxm	Rodent-secure, transversely waterproof	49
FiberConnect®	universal cable with stranded loose tubes Rodent-protected outdoor cable with central loose tube (1750 N)	50
A-DQ(ZN)B2Y n 1750 N FiberConnect®	Rodent-protected outdoor cable	51
A-DQ(ZN)B2Y n 2500 N FiberConnect®	with central loose tube (2500 N) Rodent-protected, dry-core outdoor	52
A-DQ(ZN)B2Y nxm FiberConnect®	cable with stranded loose tubes Grease-filled outdoor cable	53
A-DF(ZN)2Y nxm FiberConnect®	with stranded loose tubes Rodent-secure, grease-filled	54
A-DF(ZN)2YW2Y nxm FiberConnect®	outdoor cable with stranded loose tubes Transversely waterproof outdoor cable	55
A-DQ(ZN)(L)2Y n FiberConnect®	with central loose tube Rodent-secure, transversely waterproof	56
A-DQ(ZN)(L)2YW2Y n FiberConnect®	outdoor cable with central tube Transversely waterproof outdoor cable with stranded loose tubes	57
A-DQ(ZN)(L)2Y nxm FiberConnect®	Rodent-secure, transversely waterproof	58
A-DQ(ZN)W2Y nxm FTTH	outdoor cable with stranded loose tubes	59
FiberConnect® A-D(ZN)2Y n MDC	Micro duct cable with central loose tube	60
FiberConnect® A-DQ2Y n LMTC	Loose tube mini cable with stranded loose tubes	61
FiberConnect® 2TB600 2.8	FTTH indoor cable, duplex cable I-V(ZN)H	62
Marine cables		63
FiberConnect [®] GL U-D(ZN)BH n	Rodent-protected universal cable with system integrity (90 min)	64
FiberConnect® GL AT-V(ZN)H(ZN)H n	Breakout cable	65
Military cables		66
FiberConnect® A-V(ZN)11Y(ZN)11Y 2	Mobile field cable	67
FiberConnect® A-V(ZN)11Y(ZN)11Y 4	Mobile field cable	68
FiberConnect® A-V(ZN)11Y n	Mobile outdoor cable	69
Optical cables with UL approval		70
FiberConnect® I-V(ZN)H 1 UL OFNR	Simplex indoor cable	71
FiberConnect® I-V(ZN)H 2x1 UL OFNR	Duplex indoor cable	72
FiberConnect® I-V(ZN)HH 2x1 UL OFNR	Duplex indoor cable	73
FiberConnect® AT-V(ZN)YY 2 UL AWM Style	Duplex indoor cable	74
FiberConnect® AT-V(ZN)YY 2 UL OFNR	Duplex outdoor cable	75
FiberConnect® I-V(ZN)HH 2x1 UL OFN	Duplex indoor cable	76
Order number scheme		77
Glass fiber assembly		78
Heavy trunk		80

G50/125 Multimode fiber G50/125 acc. to IEC 60 793-2-10

Geometric/mechanical properties

Core diameter (µm)	50 ± 2.5	Cladding non-circularity (%)	< 1
Cladding diameter (µm)	125 ± 2	Core/cladding concentricity error (µr	m) < 1.5
Coating diameter (µm)	245 ± 10	Eccentricity of coating (µm)	< 10
Core non-circularity (%)	< 5	Screen test	1% expansion for 1 s (\triangleq 100 kpsi)

Transmission properties	Fiber t	ype F	Fiber t	ype G	Fiber t	ype H	Fiber	type l	Fiber	type J
	(ON	12)	(OM	2+)	(OM2	2++)	(0)	M3)	(01	M4)
Wavelength (nm)	850	1300	850	1300	850	1300	850	1300	850	1300
Attenuation max. (dB/km)	3.0	1.0	2.7	0.8	2.7	0.7	2.5	0.7	2.5	0.7
Bandwidth min. OFL (MHz · km)	500	500	500	1000	600	1200	1500	500	3500	500
Bandwidth min. EMB (MHz · km)							2000		4700	
Effective group of refraction	1.483	1.478	1.483	1.478	1.483	1.478	1.483	1.478	1.483	1.475
Numerical aperture	0.200 :	± 0.020	0.200 :	± 0.015	0.200 :	± 0.015	0.200 :	± 0.015	0.200 :	± 0.015

G62.5/125 Multimode fiber G62.5/125 acc. to IEC 60 793-2-10

Geometric/mechanical properties

Core diameter (µm)	62.5 ± 3	Cladding non-circularity (%)	< 1
Cladding diameter (µm)	125 ± 2	Core/cladding concentricity error (um) < 1.5
Coating diameter (µm)	245 ± 10	Eccentricity of coating (µm)	< 10
Core non-circularity (%)	< 5	Screen test	1% expansion for 1 s (\triangleq 100 kpsi)

Transmission properties	Fiber type L (OM1)		Fiber type	M (OM1+)
Wavelength (nm)	850	1300	850	1300
Attenuation max. (dB/km)	3.2	0.9	3.0	0.8
Bandwidth min. OFL (MHz · km)	200	500	300	800
Effective group of refraction	1.497	1.493	1.497	1.493
Numerical aperture	0.275 ± 0.015		0.275 :	± 0.015

FO Cables

Singlemode fiber E9/125 (matched cladding type) acc. to ITU-T Rec. and IEC 60 793-2-50

Radiation resistance

All fiber types are also available in a radiation-resistant versionor with approval according to MIL-PRF-49291C (6B MMF 62.5/125, 1B MMF 50/125, 7C SMF 9/125).

E9/125 singlemode fiber E9/125 (matched cladding type) acc. to ITU-T Rec. G.652.D, ITU-T Rec. G657.A and IEC 60 793-2-50 Other fiber types e.g. ITU-T G.655 or ITU-T G.657.B on request

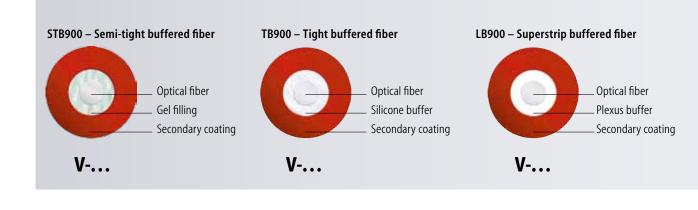
Geometric/mechanical properties

Cladding diameter (µm)	125 ± 0.7	Mode field/cladding concentricity	error (μm) < 0.5
Coating diameter (µm)	245 ± 10	Eccentricity of coating (µm)	< 12
Cladding non-circularity (%)	< 1	Screen test	1% expansion for 1 s (≙ 100 kpsi)

Transmission properties	Fiber t			type B	Fiber	type E	
				acc. to ITU-T G.652.D and ISO 11801 type OS 2		-T G.657.A	
	for semi-tight and	tight buffered fibers	for loose tubes				
Wavelength (nm)	1310	1550	1310	1550	1310	1550	
Attenuation max. (dB/km)	0.38	0.28	0.36	0.22	0.36	0.22	
Dispersion coefficient max. (ps/nm · km)	3.5	18	3.5	18	3.5	18	
Zero dispersion wavelength (nm)	1302 -	1302 – 1322		1302 – 1322		1302 – 1322	
Dispersion slope (ps/nm2 · km)	≤ 0	.090	≤ 0.090		≤ 0.092		
Cut-off wavelength (cabled) (nm)	≤ 1	≤ 1260		≤ 1260		≤ 1260	
Polarisation mode dispersion (ps/ \sqrt{km})	≤	≤ 0.2		0.2	≤ (0.2	
Effective group of refraction	1.4695	1.4701	1.4695	1.4701	1.4695	1.4701	
Mode field diameter at 1310 µm (µm)	9.2 :	± 0.4	9.2 ± 0.4		8.9 ± 0.4		

Applications and link lengths

	G50/125				G50/125		
	F	G	Н	I	J	L	М
Type acc. to ISO 11801: 09/2002	OM2	0M2+	0M2++	OM3	0M3+	OM1	0M1+
Gigabit Ethernet 1000BASE-SX (850 nm)	500 m	525 m	525 m	1000 m	1500 m	350 m	400 m
Gigabit Ethernet 1000BASE-LX (1300 nm)	550 m	1000 m	2000 m	550 m	550 m	550 m	1000 m
10 Gigabit Ethernet 10GBASE-SX (850 nm)				300 m*	550 m		
10 Gigabit Ethernet 10GBASE-LX4 (1310 nm WDM)				300 m	300 m**		


* 10 GE Link length acc. to ISO 11801.2

** Radiation resistance

Buffered optical fibers

Buffered fibers for the modular structure of the tight buffered fiber cables

10

Properties/application

- For splicing as pigtail
- As connection cables in equipment and distribution cabinets
- High flexibility
- Very good kink resistance
- Longitudinally waterproof due to gel filling
- Available without gel filling for pigtails (STB900U)
- Ease of installation and assembly (2000 mm and more can be stripped in one piece)
- Primary and secondary coatings available in 12 colours

Properties/application

- In equipment and distributor cabinets as two-sided ready assembled cable
- Resistant to temperature fluctuations
- High resistance to external mechanical loads such as bending or transverse pressures and environmental influences
- Easy consistent stripping of buffered fiber (up to 80 mm in one piece)
- Ease of installation, because of no gel filling

Properties/application

- For splicing as pigtail
- For indoor cables in equipment and distribution cabinets as well as on cable trays
- High flexibility
- Very good kink resistance
- Ease of installation, because of no gel filling
- Ease of installation and assembly (1000 mm and more can be stripped in one piece)
- Primary and secondary coatings available in 12 colours

Thermal properties

Transport and storage	-20°C to +50°C
Installation	$+5^{\circ}C$ to $+40^{\circ}C$
Operation	-10° C to $+60^{\circ}$ C

Mechanical properties

min. bending radius	30 mm
max. pull force, long-term	5 N
max. crush resistance, long-term	200 N

The right buffered fiber for every application

Alternative constructions

Buffered	ø	1.		Stripable	Flexibi-	Resist- ance to tem- perature	Ease of instal-	Suit- able for	
fiber	[µm]	Туре	Order no.	in one piece	lity	cycling	lation	splicing	Note
TB500A	500	Mini tight buffered fiber, upcoated	8499998Z	Up to 50 mm	+++	+++	++	No	Miniaturised optical cables suitable for SFFC (Small Form Factor Connector, e.g. MT-RJ), high temperature stability, ideal for stripping machines
TB600	600	Mini tight buffered fiber	84950116	Up to 80 mm	++	++	+	No	Suitable for SFFC (Small Form Factor Connector, e.g. MT-RJ)
TB600A	600	Mini tight buffered fiber, upcoated	8499998Y	Up to 50 mm	+++	+++	++	No	Suitable for SFFC (Small Form Factor Connector, e.g. MT-RJ), high temperature stability, ideal for stripping machines
TB900A	900	Tight buffered fiber, upcoated	8499998X	Up to 50 mm	+++	+++	++	No	All indoor cables for connector assembly at both ends, high temperature stability, ideal for stripping machines
STB900U unfilled	900	Semi-tight buffered fiber, dry core	84998009	Up to 2000 mm	++	+	+++	Yes	Pigtail assembly, primary and secondary coatings available in 12 colours
STB900H	900	Semi-tight buffered fiber, dry core, flame retardant (FRNC)	84998007	Up to 1000 mm	++	++	+++	Yes	All indoor cables, pigtail assembly, primary and secondary coatings available in 12 colours
Plastic tube	1400	Plastic tube, gel-filled	84997101	Up to 2000 mm	++	++	+	Yes	Suitable for cables in harsh industrial environments, drag chain cables
TB900L	900	Tight buffered fiber, flexible, with Hytrel®	8499800L	Up to 50 mm	+++	+++	+	No	Flexible buffered fiber, high temperature stability
TB900R	900	Tight buffered fiber, rigid	84988004	Up to 50 mm	+	++	+	No	More rigid buffered fiber, high tempera- ture stability, ideal for stripping machines
STB900RF	900	Semi-tight buffered fiber, rigid, gel-filled	84998005	Up to 2000 mm	+	++	++	Yes	More rigid buffered fiber, high tempera- ture stability, ideal for manual assembly
STB900RU	900	Semi-tight buffered fiber, rigid, dry core	84998008	Up to 2000 mm	+	++	+++	Yes	More rigid buffered fiber for pigtail assembly

Handling and safety notices when using optical cables

12

Please observe the following when installing optical fibers:

- Valid installation regulations for optical fibers
- Valid industrial safety guidelines for handling optical fibers
- VDE regulations (DIN EN 50174-3 Information technology Cabling installation)

The following regulations also apply:

- The drums must always be stored and transported standing on their flanges
- Please note the limit values specified in the respective data sheet
- Do not remove the protective packaging from the cable ends during installation
- Do not go below the permitted bending radius (see data sheet)
- Avoid soiling and mechanical loading of the assembled connectors
- Do not exceed the maximum tensile load of the cable in axial direction during and after installation (use suitable aids)
- The maximum tensile load only applies in conjunction with adhesion with the strain relief elements
- Installation is not permitted if the ambient temperature is exceeded or gone below (specific value in the data sheet)
- Cable runs must be selected so as to avoid mechanical loads as far as possible and also minimise future loads
- Mechanical stresses, for example caused by movement, must be prevented, even during provisional installation
- Compression of the outer jacket, for example by cable ties, must be avoided when securing the cables
- After installation: carefully free the cable ends from the packaging/pull tool

- All cable ends must be protected from the ingress of moisture before, during and after installation
- Immersion with water must be avoided the fibers and connectors must not come into contact with water
- Optical fibers must be unwound from the coil or ring without torsion so that no kinks or twists can occur
- Install optical cables with extreme care. Please make sure that the fibers are neither overstretched nor compressed

 in addition to immediate damage, this also poses the threat of problems with the long-term behaviour
- When installing in protective conduits, please make sure that these have no sharp edges and that kinks are avoided
- The attenuation of each cable must be checked immediately after installation using a suitable calibrated meter, else warranty claims may be forfeited
- Body and eye protection must be worn when handling bare fibers from glass optical fibers, including if the cable is damaged
- Please note all regulations relating to eye safety

Buffer tube and jacketing material for optical cables

Balancing application and fire prevention criteria

The jacket around the cable is designed to protect the optical fiber(s) from the effects of mechanical, thermal and chemical action as well as the ingress of moisture. In the event of a fire, however, the cable jacket should prevent a fire from spreading and stop toxic and corrosive gases from being produced.

The use of halogen-free, flame-retardant materials is advisable in order to protect equipment and buildings in but above all to protect people. In harsh environments, PUR and PVC, in particular, are used owing to their high resistance to oils and their abrasion resistance. PE is also commonly used as a jacket material for outdoor applications. However, it is often extremely difficult to meet all the requirements using just one jacket material. To best satisfy the prevailing local operating conditions, the Fiber Optics business unit offers the user a choice of four standard materials.

Please contact us if the criteria for your particular application are not met by the cable constructions in this catalogue. Additional requirements can often be met through customised measures when making the jacket (e.g. aluminium tape or special mixtures of materials).

	Cable ja	cket mate	rial	
Material properties	TPE-O (FRNC)	TPE-U (PUR)	PVC	PE
Resistance to aging	+	+	+	+
Halogen-free	+	+		+
Flame retardancy	+	+	+	/•
Elasticity	-	+	•	-
Abrasion resistance	-	++	+	+/-
Low smoke gas generation	++	•	-	/●
Low emission of corrosive gases	++	•		+/●
Low smoke gas toxicity	++	•		+/●
No toxicological risk	++	•	-	+/●

General resistance to	TPE-O (FRNC)	TPE-U (PUR)	PVC	PE
UV light	1)	1)	1)	1)
Water absorption	-	-	+	+
Gas diffusion	-	2)		•
Fuels	-	+	+/-	+
Petroleum/lubricants	-	++	•	+
Organic solvents	-	+ 3)	-	+ 4)
Alcohol	-	-	+	+
Oxidants	-	-	+	-
Acids	+		+	++
Alkaline solutions	+		+	+
Saline solutions		-	+	+

++ excellent

- + good
- depends on recipe
- weak
 inadequate
- UV resistance can be increased by adding black colour pigments or UV stabilisers
- Permeation depends on type of gas, e.g. Ar, CH₄, N₂, O₂ low gas permeation, CO₂, H₂, He higher gas permeation
- 3) Low swelling in saturated hydrocarbons; significant swelling in aromatic hydrocarbons, aliphatic esters cause swelling, highly polar organic solvents dissolve under the effect of extreme swelling
- Swelling in aliphatic and aromatic hydrocarbons and in chlorinated hydrocarbons
- Not resistant to chlorinated hydrocarbons, resistant to hydrocarbons and aliphatic and aromatic solvents

Note: Instead of FRNC (flame retardant non corrosive), the expression LSOH or LSZH (low smoke zero halogene) is often used.

Type designations for optical cables

14

	<mark>I</mark> – V (ZN) H H 40	550/125 STB900 2.5
Field of application		
ndoor cable		
Universal cable	U	Other examples:
Outdoor cable	A	
Splittable outdoor cable	AT	Indoor cable (glass/glass)
	AI	I–V (ZN) H H 4G50/125 STB900 2.5
Buffered fiber type		\rightarrow Indoor cable (breakout) with tight
Tight buffered fiber	V	buffered fibers
Gel-filled loose tube	D	
Gel-filled plastic tube	W	Single elements 2.5 mm with non-
Constructional commonition		metallic strain relief and FRNC jacket
Constructional composition		FRNC outer jacket 4 fibers or single
Dry core, longitudinally watertight	Q	elements
Grease-filled	F	Fiber type: G50/125
Optical cable with copper elements	S	Buffered fiber type: semi-tight buffer
Non-metallic strain relief	(ZN)	fiber with 900 µm
Aluminium sheath	(L)	Diameter of single element: 2.5 mm
Steel strain relief	(ZS)	
Armour	В	Outdoor cable (glass/glass)
Corrugated steel cladding	W	A–D Q (ZN)2Y W 2Y 4X12 G62.5/12
Inner jacket mixtures		\rightarrow Outdoor cable with loose tubes,
	V	longitudinally watertight with swelle
PVC (polyvinyl chloride)	Y	Non-metallic strain relief under PE inte
PE (polyethylene)	2Y	
PA (polyamide)	4Y	mediate cladding
ETFE (tetrafluoroethylene)	7Y	Corrugated steel cladding with PE out
PP (polypropylene)	9Y	jacket
PUR (polyurethane)	11Y	4 multi-fiber loose tubes with 12 fibers e
IPE-E (thermoplastic copolyster elastomer,	12Y	Fiber type: G62.5/125
e.g. Hytrel®)	121	
H stands for an FRNC jacket; TPE-O		Outdoor cable (PCF)
(thermoplastic polyolefin elastomer) is used	н	AT-V (ZN) Y 11Y 2 K200/230 10A17
Outer jacket mixtures		8B20 7.4 MM
See under inner jacket mixtures	E.g. H	→ Splittable outdoor cable (breakout
see under inner Jacket mixtures	с.y. п	with tight buffered fibers
Fiber number or fiber bundling		Single elements with non-metallic str
Number of fibers	n	relief and PVC jacket
Number of multi-fiber loose tubes x number of fibers	nxm	
per multi-fiber loose tube		PUR outer jacket
Fiber type/fiber core diameter/fiber cladding		2 fibers or single elements
diameter		Fiber type PCF: K200/230
Singlemode fiber (glass/glass)	E	Attenuation:10 dB/km at 650 nm
Multimode graded-index fiber (glass/glass)	G	Bandwidth 17 MHz x km
Multimode step-index fiber (glass/glass)	S	Attenuation: 8 dB/km at 850 nm
	K	Bandwidth 20 MHz x km
PCF Multimode step-index fiber (glass/polymer)		Total diameter of cable: 7.4 mm
PCF Multimode graded-index fiber (glass/polymer)	GK	
POF Polymer fiber (polymer/polymer)	Ρ	Indoor cable (POF)
Optical transmission properties as well as buffe-		I–V 2Y (ZN) 11Y 1 P980/1000 160A
red fiber types		6.0 MM
a) Fiber attenuation / wave range / bandwidth		\rightarrow Indoor cable with tight buffered fib
(only with PCF and POF fibers)		POF fiber with PE buffer tube
xx Attenuation (dB/km)		with non-metallic strain relief over i
z Wave range (nm), $A = 650$ nm, $B = 850$ nm,	xx z yy	
F = 1300 nm, H = 1550 nm	.,,	PUR outer jacket
yy Bandwidth (MHz x km with PCF)		1 buffered fiber
(MHz x 100 m with POF)		Fiber type POF: P980/1000
b) Buffered fiber type (only with glass/glass fibers)		Attenuation: 160 dB/km at 650 nm
Miscellaneous, e.g. plant-specific details		Bandwidth 10 MHz x 100 m Total diameter of cable: 6.0 mm
Diameter of single element or cable outer diameter		
Dimension with flat cables (e.g. 2.2) (4.5 mm)		A STREET
 Dimension with flat cables (e.g. 2.2 x 4.5 mm) 		
 Data on copper buffered fibers with hybrid cables 	E.g. 2.5	
	E.g. 2.5	

LEONI

Fiber colour code for multi-fiber loose tubes

Standard code of the Fiber Optics business unit acc. to IEC 60304

Fiber no.	Fiber colour code	
1	red	
2	green	
3	blue	
4	yellow	
5	white	
б	grey	
7	brown	
8	violet	
9	turquoise	
10	black	
11	orange	
12	pink	

Fiber no.	Fiber colour code with ring marking				
13	red				
14	green				
15	blue				
16	yellow				
17	white				
18	grey				
19	brown				
20	violet				
21	turquoise				
22	transparent (no ring marking)	\bigcirc			
23	orange				
24	pink				

Standards

Optical cables from Fiber Optics fulfil one or more of the following standards:

- DIN VDE 0888
- DIN VDE 0899
- DIN VDE 0472
- DIN VDE 0473
- EN 50 173
- EN 187 000 to 187 105
- EN 188 000
- ITU-T Rec G.651 to G.657
- IEC 60793
- IEC 60794

16

Flame-retardant and halogen-free jacket The outer jacket of the cable is self-extinguishing and does not propagate fire. The halogen-free jacket material forms neither toxic nor corrosive combustion gases in the event of fire.
Non-retardant jacket The cable meets certain fire prevention standards.
Oil resistance Generally good resistance to oil, petrol, acids and alkaline solutions.
Rodent proof The cable core is protected or safe from damage caused by rodents.
Suitable for use with drag chains The cable composition is tested and approved for use in drag chains.
UV resistance Cable outer jacket is UV-resistant.
Transversely waterproof Diffusion of water at right angles to the cable core is prevented.
Longitudinally waterproof Water in the cable core cannot spread out in longitudinal direction.

Industrial Cables

Industrial Cables

In industry, one frequently comes up against a wide variety of technical requirements that cannot be met with conventional cables. The Fiber Optics business unit is the specialist for application-optimised optical cables in industrial settings.

Extensive know-how, many years of experience and a highly flexible production setup enable us to design and produce the right cable for even the most demanding areas.

We offer

- cables with oil-resistant jacket materials
- cables for mobile use in drag chains
- cables for the greatest bending stresses, such as in component placement machines in the electronics industry, for example
- cables for extremely high temperature ranges up to 300°C
- cables with radiation-resistant fibers
- cables with leak-proof buffered fiber filling gels
- longitudinally welded stainless steel conduits and much more

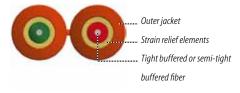
On the following pages you will find a selection of high-quality products. We will be pleased to advise you if you cannot find the right product for your specific requirements. If necessary, we can develop and produce the cable solution for your application.

Simplex cable PUR

Order no.	84 006 00 🗌 🗌				
Standardisatio	n IEC 60 794-2				
Application	Oil-resistant patch cable	in distribution systems as well as for connecting			
	terminals in harsh indust	rial environments			
Construction	Cable core	Tight buffered fiber (TB), semi-tight buffered			
		fiber (STB) or superstrip (LB)			
	Strain relief elements	Non-metallic (aramid)			
	Cable jacket	Polyurethane (PUR)			
	Colour of jacket	Orange for multimode, yellow for singlemode			
		ightarrow other colours possible			
Thermal	Transport and storage	-25°C to +70°C			
properties	Installation	-5°C to +50°C			
	Operation	–10°C to +70°C			
Mechanical	Outer dimensions	2.8 mm			
properties	Weight	6 kg/km			
	min. bending radius	static 30 mm			
		dynamic 45 mm			
	max. pull force	long-term 400 N			
	max. crush resistance	500 N/dm			
	Resistance to impact	3 impacts/1 Nm			
Chemical	Very good resistance to	oil, petrol, acids and alkaline solutions			
properties					
Fire	The cable is halogen-free and self-extinguishing				
performance					

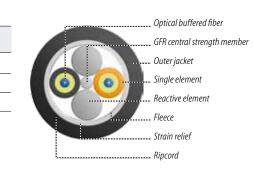
1

Outer jacket Strain relief elements Tight buffered or semi-tight buffered fiber


😃 🥪 🥝

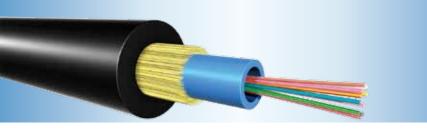
Industrial Cables


Duplex cable PUR


FiberConnect® I-V(ZN)11Y 2x1

Order no.	84 007 01 🗌 🗌			
Standardisatio	n IEC 60 794-2			
Application	Oil-resistant patch cable	in distribution	systems as well as for connecting	
	terminals in harsh indust	rial environme	nts	
Construction	Cable core	Tight buffered fiber (TB), semi-tight buffered fib		
		(STB) or superstrip (LB)		
	Strain relief	Non-metallio	: (aramid)	
	elements			
	Cable jacket	Polyurethan	e (PUR)	
	Colour of jacket	Orange for multimode, yellow for singlemode		
		ightarrow other colours possible		
Thermal	Transport and storage	e −25°C to +70°C		
properties	Installation	-5°C to +50°C		
	Operation	-10°C to +70°C		
Mechanical	Outer dimensions	3.0 x 6.0 mm]	
properties	Weight	15 kg/km		
	min. bending radius	static	30 mm	
		dynamic	60 mm	
	max. pull force	long-term	600 N	
	max. crush resistance	500 N/dm		
	Resistance to impact	3 impacts/1	Nm	
Chemical	Very good resistance to	oil, petrol, acid	ls and alkaline solutions	
properties				
Fire	The cable is halogen-fre	e and self-exti	nguishing	
performance				

Breakout cable with rodent protection

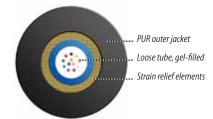

FiberConne	ct® AT-V(ZN)H(ZN)B2Y	FR 2 2.1 n	nm		
Order no.	84 215 017 🗌				
Standardisatio	n IEC 60794-3, DIN VDE 088	38 Part 5			
Application			loors and outdoors with non-		
	metallic rodent protection. Suitable for direct connector assembly.				
	Jacket material with very	low water abs	sorption suitable for running		
	directly in the ground.		. 5		
Construction	Breakout single element	Tight buffere	ed fiber or semi-tight buffered fiber		
		with non-me	tallic strain relief elements (aramid		
		and halogen-	-free, flame-retardant subcable		
		jacket, Ø 2.1 i	mm, colours: orange and black		
	Cable core	Glass fiber-reinforced central strength member			
		in the core, ov	in the core, over that two breakout single elements		
		and two reactive elements stranded in one layer			
	Таре	1 layer of fleece			
	Armour	Multi-functional E-glass yarn as non-metallic			
		strain relief elements and rodent protection			
	Cable jacket	Halogen-free and flame-retardant material			
	Colour of jacket	Black			
Thermal	Transport and storage	-40°C to +80	0°C		
properties	Installation	-5°C to +50°C			
	Operation	-40°C to +80°C			
Mechanical	Outer dimensions	7.8 mm			
properties	Weight	55 kg/km			
	min. bending radius	static	80 mm		
		dynamic	120 mm		
	max. pull force	short-term	2000 N		
		long-term	600 N		
	max. crush resistance	2000 N/dm			
	Resistance to impact	5 impacts/2 l			
Fire	Flame retardancy	IEC 60332-1-2	2 and IEC 60332-3-22 Cat. A		
performance	Smoke density	IEC 61034			
	Halogen-free	IEC 60754-2			

No corrosive and toxic fumes

UV-resistant outer jacket

Note

Mobile camera cable (universal cable) with central loose tube



LEONI U-DQ(ZN)11Y n...

Order no.	84 023 🔲 🗌 🗌				
Standardisatio	on DIN VDE 0888, Part 6 and IEC 60 794-2				
Application	Light, flexible and non-m	netallic cable th	at can be used both inside		
	and outside buildings. In	stallation in cab	le ducts, on cable trays or in cable		
	conduits. Suitable for fixe	ed and flexible u	use in harsh industrial environments.		
Construction	Cable core	Loose tube,	gel-filled		
	Strain relief	Aramid yarns			
	Cable jacket	Polyurethane (PUR)			
	Colour of jacket	Black			
Thermal	Transport and storage	-25°C to +70°C			
properties	Installation	–25°C to +50°C			
	Operation	-25°C to +70°C			
Mechanical	min. bending radius	static	15 x outside diameter		
properties		dynamic	20 x outside diameter		
	max. pull force	long-term	2500 N		
	max. crush resistance	long-term	3000 N/dm		
	Resistance to impact	5 impacts/3	Nm		
Fire	Cable is self-extinguishin	Ig			
performance	Halogen-free	IEC 60754-2			
	No corrosive and toxic fumes				
Chemical	Very good resistance to o	oil, petrol, acids	and alkaline solutions		
properties					

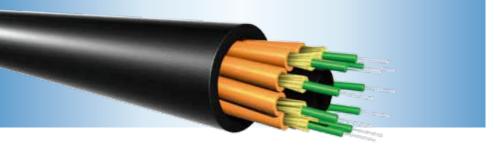
Max. number of fibers	Outer Ø	Weight	Fire load
	mm	kg/km	MJ/m
12	6.5	34	0.55
24	7.7	53	0.76

Breakout cable suitable for drag chains

FiberConnect® AT-V(ZN)YY				
Order no.	84 206 📖 🗌 🗌			
Standardisatior	n DIN VDE 0888, Part 6 and	d IEC 60 794-2		
Application	Rugged breakout cable s	suitable for drag chains that can be used both		
	inside and outside build	ings and in harsh industrial environments.		
	For direct connector ass	embly.		
Construction	Cable core	Glass fiber-reinforced central strength member		
		with strand elements, designed as tight		
		buffered or semi-tight buffered fiber, gel-filled		
		with non-metallic strain relief elements (aramid)		
		and PVC subcable jacket (Ø 2.5 mm)		
	Colour	Orange for multimode, yellow for singlemode		
	Cable jacket	Polyvinyl chloride (PVC)		
	Colour of jacket	Black		
Thermal	Transport and storage	-25°C to +80°C		
properties	Installation	-5°C to +50°C		
	Operation	-20°C to +80°C		
Mechanical	max. crush resistance	long-term 800 N/dm		
properties	Resistance to impact	10 impacts/2 Nm		
	Drag chain test	5,000,000 cycles		
Fire	Flame retardancy	IEC 60332-1-2		
performance				
Chemical	Good resistance to oil, pe	etrol, acids and alkaline solutions		

PVC outer jacket Tight or semi-tight buffered fiber PVC subcable jacket Strain relief elements

Number of fibers	Outer Ø	Weight	Min. bending radius static	Min. bend- ing radius dynamic	Max. pull force	Fire load
	mm	kg/km	mm	mm	Ν	MJ/m
2	9.5	80	95	140	800	1.20
4	9.5	85	95	140	800	1.20
6	10.5	110	105	155	1200	1.36
8	12.3	150	125	185	1200	1.52
10	13.8	170	140	205	1200	1.68
12	15.6	210	145	235	1200	1.84

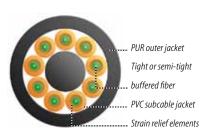

properties

Fiber**Tec**

Fiber**Switch**

TIDEISPIIL

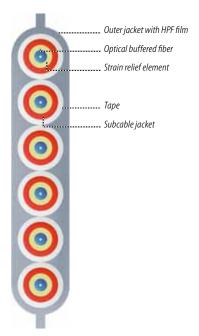
Breakout cable suitable for drag chains, oil resistant



FiberConnect® AT-V(ZN)Y11Y...

Order no.	84 207 🔲 🗌 🗌	84 207 📖 🗌 🗌				
Standardisatio	on DIN VDE 0888, Part 6 an	d IEC 60 794-2				
Application	Rugged breakout cable	Rugged breakout cable suitable for drag chains that can be used both				
	inside and outside build	lings and in harsh industrial environments.				
	For direct connector ass	embly. With oil-resistant outer jacket.				
Construction	Cable core	Glass fiber-reinforced central strength member				
		with strand elements, designed as tight				
		buffered or semi-tight buffered fiber, gel-filled				
		with non-metallic strain relief elements (aramid)				
		and PVC subcable jacket (Ø 2.5 mm)				
	Colour	Orange for multimode, yellow for singlemode				
	Cable jacket	Polyurethane (PUR)				
	Colour of jacket	Black				
Thermal	Transport and storage	-25°C to +80°C				
properties	Installation	–5°C to +50°C				
	Operation	-20°C to +80°C				
Mechanical	max. crush resistance	long-term 800 N/dm				
properties	Resistance to impact	10 impacts/2 Nm				
	Drag chain test	5,000,000 cycles				
Chemical	Very good resistance to o	Very good resistance to oil, petrol, acids and alkaline solutions				
properties						
Note	Cable jacket with high abrasion resistance					

Number of fibers	Outer Ø	Weight	Min. bending radius static	Min. bend- ing radius dynamic	Max. pull force	Fire load
	mm	kg/km	mm	mm	Ν	MJ/m
2	9.5	80	95	140	800	1.20
4	9.5	85	95	140	800	1.20
6	10.5	110	105	155	1200	1.36
8	12.3	150	125	185	1200	1.52
10	13.8	170	140	205	1200	1.68
12	15.6	210	145	235	1200	1.84

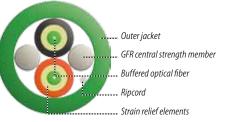


High-performance flex flat cable

FiberConnect® HPF-FO-Cable n...

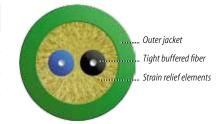
Order no.	See table				
Standardisatio	n DIN VDE 0888, Part 6 and IEC 60 794-2				
Application	Drag cable with maximum flexibility, low friction and low abrasion				
	for applications in industrial clean rooms and in medical technology				
Construction	Cable core	Several single-fiber cables arranged in pa			
		beside each other with buffered fiber typ			
		TB600, non-metallic strain relief elements			
		(aramid) and subcable jacket made from			
		TPE taped with ePTFE, diameter 1.6 mm			
	Cable jacket	HPF film			
	Colour of jacket	Grey			
Thermal	Transport and storage	–25°C to +7	'0°C		
properties	Installation	+5°C to +50°C			
	Operation	-10°C to +6	j0°C		
Mechanical	min. bending radius	dynamic	50 mm (over flat side)		
properties					
Fire	No requirement				
performance					

Number of tubes	Total width	Weight	Order no.
	mm	kg/km	
4	10.0	20	84950772 🗌
6	14.0	30	84950773 🗌
8	19.0	40	84950774 🗌
12	27.0	60	84950776 🗌

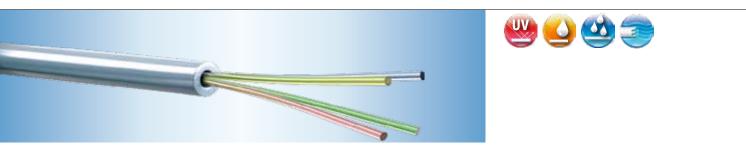

and the second s

Profinet type B duplex indoor cable

FiberConnect® B AT-W(ZN)YY Z...


Order no.	84950544 🗌			
Standardisatio	n DIN VDE 0888, Part 6 an	d PROFINET sta	ndard	
Application	Bus cable for PROFINET	applications in	industrial settings	
	for fixed installation in o	able ducts and	l conduits	
Construction	Cable core	Stranding cor	nsisting of two PVC single cables with	
		buffered fibers 1.4 mm and with non-metallic		
		strain relief elements (aramid) (Ø 2.9 mm)		
	Cable jacket	Flame-retardant polyvinyl chloride (PVC)		
	Colour of jacket	Black and orange (with printed arrows)		
Thermal	Transport and storage	-20°C to +70°C		
properties	Installation	-5°C to +50°C		
	Operation	-20°C to +70)°C	
Mechanical	Outer dimensions	9.2 mm		
properties	Weight	72 kg/km		
	min. bending radius	static	90 mm	
		dynamic	135 mm	
	max. pull force	short-term	600 N	
	max. crush resistance	short-term	500 N/dm	
Fire	Flame retardancy	IEC 60332-1-2	2	
performance				
Note	The cable is also availabl	e with a polyure	ethane (PUR) jacket	

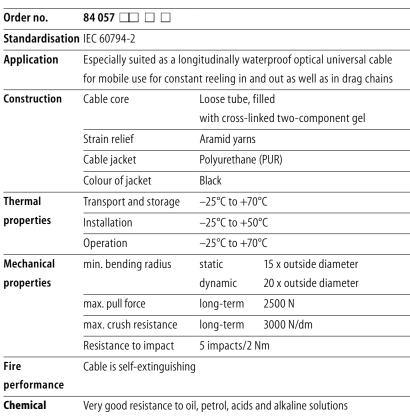
ETFE high-temperature cable Duplex cable



FiberConnect® I-V(ZN)7Y 2G50/125 TB9007Y 3.0 HAT 150

Order no.	84 950 686 🗌			
Standardisatio	n IEC 60794-2			
Application	For use at higher tempe	ratures, such a	s in engines and smelting	
	plants for example, as w	vell as for enviro	onments with aggressive media	
	in the chemical industry	1		
	For direct connector ass	embly		
Construction	Cable core	Fiber with special coating, type HTC 200		
		for continuo	us temperatures up to 150°C	
		and ETFE but	ffer with Ø 0.9 mm	
	Strain relief elements	Non-metallic (aramid)		
	Cable jacket	Ethylene tetrafluorethylene (ETFE)		
	Colour of jacket	Green		
Thermal	Transport and storage	-40°C to +1	50°C	
properties	Installation	-5°C to +50°	°C	
	Operation	-40°C to +1	50°C	
Mechanical	Outer diameter	3.0 mm		
properties	Weight	11 kg/km		
	min. bending radius	static	30 mm	
		dynamic	45 mm	
	max. pull force	long-term	500 N	
	max. crush resistance	200 N/dm		
	Resistance to impact	3 impacts/1	Nm	
Chemical	Very good resistance to	oil, petrol, acid	s and alkaline solutions	
properties				
Fire	IEC 60332-1-2			
performance				

Stainless steel conduit with optical fibers



FiberConne	ct® stainless steel co	nduit x mm n		6
Order no.	See table			6
Standardisatio	n IEC 60794-4			
Application	For use in optical groun	d wires (OPGW) as well as for	environments	
	with aggressive media a	and high mechanical loads		
Construction	Optical fibers, colour co	ded		
	Gel filling			
	Longitudinally welded, h	ermetically sealed metal condu	uit	
	made from stainless stee			
	DIN 17441, type 1.4301 a	nd ASTM 304		
	Thickness: 0.2 mm; diam	eter: see table		
Thermal	Transport and storage	-40°C to +80°C	The OD	timum solution ecting the fibe
properties	Installation	-20°C to +80°C	for prot	timum solution ecting the fibe st oil and wate
	Operation	-40°C to +80°C	again	51 011-
Mechanical	min. bending radius	See table		
properties	max. pull force	See table		
Note	 Also available witho 	ut gel filling		
NULE	 Fibers with polyimid 	le coating can be used		
	Conduits with copped	er coating on request		
	 Conduits with silicor 	ne cladding on request		

Number of fibers	Conduit Ø	Weight	Bending radius min.	Pull force max.	Order no.
	mm	kg/km	mm	Ν	
2	1.17	6.5	50	150	84950802 🗌
2	1.45	7.3	70	190	84950806 🗌
4	1.45	7.3	70	190	84950808 🗌
2	1.00	11.2	80	230	84950810 🗌
4	1.80	11.2	80	230	84950812 🗌
2	2.00	12.5	80	260	84950818 🗌
4	2.00	12.5	80	260	84950820 🗌
2	2.20	13.5	90	290	84950822 🗌
4	2.20	13.5	90	290	84950824 🗌
2		21.5	100	420	84950827 🗌
4	3.20	21.5	100	420	84950829 🗌
6		21.5	100	420	84950831 🗌

Central loose tube cable with leak-proof, cross-linked gel

👑 🥪 실 🤕

PUR outer jacket Loose tube, gel-filled Strain relief elements

2-component gel cables

The cross-linked gel fixes the excess length of the fibers in the loose tube so there is no localised banking up of the excess lengths during movement.

This design is therefore especially suited as a longitudinally watertight optical universal cable for mobile use for constant reeling in and out as well as in drag chains. The cross-linked gel retains its consistency even at high temperatures, thereby preventing the gel leaking out when dealing with installation distances with big drops or with vertical installation.

Splice trays filling up with gel and sagging fibers are therefore a thing of the past.

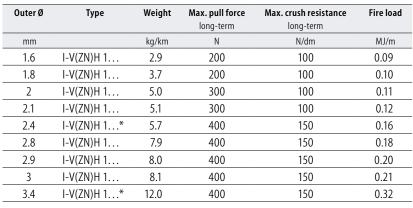
	briannienen	/		
	Cable jacket	Polyurethane	e (PUR)	
	Colour of jacket	Black		
Thermal	Transport and storage	-25°C to +70°C		
properties	Installation	–25°C to +5	0°C	
	Operation	-25°C to +70°C		
Mechanical	min. bending radius	static	15 x outside diameter	
properties		dynamic	20 x outside diameter	
	max. pull force	long-term	2500 N	
	max. crush resistance	long-term	3000 N/dm	
	Resistance to impact	5 impacts/2	Nm	
Fire	Cable is self-extinguishir	ıg		
performance				
Chemical	Very good resistance to o	oil, petrol, acids	and alkaline solutions	
properties				

Max. number of fibers	Outer Ø	Weight	Fire load
	mm	kg/km	MJ/m
12	6.5	36	0.55
24	7.7	50	0.76

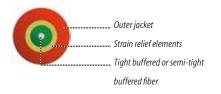
Office Cables

Office cables

Office cabling is typically divided into primary, secondary and tertiary cabling. Indoor and universal cables are frequently used in the secondary and tertiary areas.


FiberConnect[®] optical indoor cables are ideally suited to the manufacturing of assembled connection cables for all conceivable cabling structures and network topologies. Either multimode fibers with different specifications or singlemode fibers are used for these cables, depending on the required data rate and the distance to be covered. Optical indoor cables with a halogen-free and flame-retardant jacket are required in order to fulfil the strict fire prevention requirements for indoor installations, since they are guaranteed not to propagate fire and not to produce corrosive and toxic gases.

Flexibility, greatly reduced weight, small outer diameter and ruggedness are some of the differing requirements depending on the field of application that are fulfilled with cables from the FiberConnect[®] series.


The range of FiberConnect[®] optical indoor cables includes simplex and duplex cables, mini breakout cables as well as flat and round breakout cables.

Simplex cable

FiberConne	ct [®] I-V(ZN)H 1				
Order no.	84 003				
Standardisatio	n DIN VDE 0888, Part 4 an	d IEC 60 794-2			
Application	Ideal for use as a patch cable in distribution systems as well as for connecting terminals due to the high flexibility and small diameter				
Construction	Cable core	Tight buffered fiber (TB), semi-tight buffered			
		fiber (STB) or superstrip (LB)			
	Strain relief elements	Non-metallic (aramid)			
	Cable jacket	Halogen-free and flame-retardant material			
	Colour of jacket	Orange for multimode, yellow for singlemode			
		ightarrow other colours possible			
Thermal	Transport and storage	-25°C to +70°C			
properties	Installation	-5°C to +50°C			
	Operation	-10°C to +70°C			
Mechanical	min. bending radius	static 30 mm			
properties		dynamic 60 mm			
Fire	Flame retardancy	IEC 60332-1-2 and IEC 60332-3-22 Cat. A			
performance	Smoke density	IEC 61034			
	Halogen-free	IEC 60754-2			
	No corrosive and toxic fu	umes			

* acc. to TS 0011/96 Deutsche Telekom

All simplex cables available with TB, STB and LB buffered fibers. Order no. on request.

*

Office Cables

Duplex cable

FiberConnect® I-V(ZN)H 2x1...

Order no.	84 005				
Standardisation	DIN VDE 0888, Part 6 and IEC 60 794-2				
Application	Ideal for use as a patch cable in distribution systems as well as				
	for connecting terminals due to the high flexibility and small d				
Construction	Cable core	Tight buffer	ed fiber (TB), semi-tight buffered		
		fiber (STB) or superstrip (LB)			
	Strain relief	Non-metallic (aramid)			
	elements				
	Cable jacket	Halogen-free and flame-retardant material			
	Colour of jacket	Orange for r	nultimode, yellow for singlemode		
		ightarrow other col	ours possible		
Thermal	Transport and storage	–25°C to +7	70°C		
properties	Installation	-5°C to +50°C			
	Operation	-10°C to +7	'0°C		
Mechanical	min. bending radius	static	30 mm		
properties		dynamic	60 mm		
Fire	Flame retardancy	IEC 60332-1	-2 and IEC 60332-3-22 Cat. A		
performance	Smoke density	IEC 61034			
	Halogen-free	IEC 60754-2			
	No corrosive and toxic fu	umes			

Weight

kg/km

5.8

7.4

9.0

9.0

12.6

15.8

17.5

Туре

I-V(ZN)H 2x1...

Max. pull force

long-term

Ν

400

400

400

400

400

600

600

Max. crush resistance

long-term

N/dm

200

200

200

400

400

600

600

Fire load

MJ/m

0.18

0.20

0.22

0.24

0.32

0.36

0.42

Outer jacket
Strain relief elements
Tight buffered or semi-tight
buffered fiber

All duplex cables available
with TB, STB and LB buffered fibers.
Order no. on request.

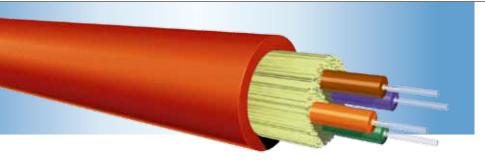
Outer Ø

mm

1.6 x 3.3

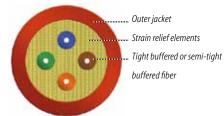
1.8 x 3.7

2.0 x 4.1

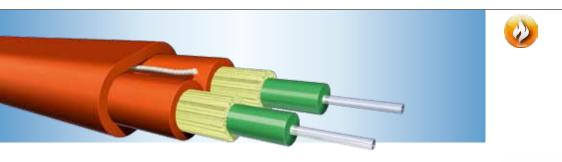

2.1 x 4.3

2.4 x 4.9

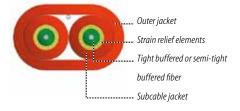
2.8 x 5.7


3.0 x 6.1

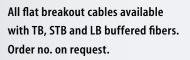
Mini breakout cable


FiberConnec	t® I-V(ZN)H n				
Order no.	84 026				
Standardisation	DIN VDE 0888, Part 6 and IEC 60 794-2				
Application	Ideal for workstation cabling due to the high flexibility and small dimer				
	Non-metallic indoor cable	e for direct connector assembly.			
Construction	Cable core	Tight buffered fiber (TB), semi-tight buffered			
		fiber (STB) or superstrip (LB)			
	Strain relief elements	Non-metallic (aramid)			
	Cable jacket	Halogen-free and flame-retardant material			
	Colour of jacket	Orange for multimode, yellow for singlemode			
Thermal	Transport and storage	-25°C to +70°C			
properties	Installation	-5°C to +50°C			
	Operation	-10°C to +70°C			
Mechanical	max. pull force	long-term 800 N			
properties	max. crush resistance	long-term 300 N/dm			
Fire	Flame retardancy	IEC 60332-1-2 and IEC 60332-3-22 Cat. A			
performance	Smoke density	IEC 61034			
	Halogen-free	IEC 60754-2			
	No corrosive and toxic fu	imes			

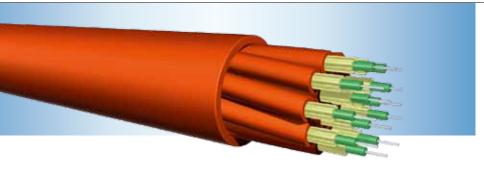
mm kg/km 2 4.2 14	mm 40	mm 65	MJ/m 0.45
2 4.2 14	-	65	0.45
	<i></i>		
4 5.6 21	55	85	0.47
6 5.9 25	60	90	0.50
8 6.1 30	60	90	0.52
12 7.0 38	70	95	0.55
16 8.4 59	85	120	0.74
24 9.4 72	95	135	0.92


All mini breakout cables available with TB, STB and LB buffered fibers. Order no. on request.

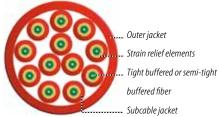
Breakout cable, flat



FiberConnect[®] I-V(ZN)HH 2x1...


Order no.	84 011 🔲 🗌 🗌				
Standardisatio	n DIN VDE 0888, Part 6 and	d IEC 60 794-2	2		
Application	Light, thin and rugged in	door cable for	r use as a patch cable in distribution		
	systems, as connection c	systems, as connection cable for terminals as well as for workstation cabling.			
	For direct connector asse	embly.			
Construction	Cable core	Two single-	fiber cables (TB, STB or LB) arranged		
		in parallel b	beside each other with non-metallic		
st			strain relief elements (aramid) and halogen-free,		
		flame-retar	flame-retardant subcable jacket (Ø see table)		
Cable jacket Halogen-f		Halogen-fr	ogen-free and flame-retardant material		
	Colour of jacket	Orange for	multimode, yellow for singlemode		
Thermal	Transport and storage	-25°C to +	70°C		
properties	Installation	-5°C to +5	0°C		
	Operation	-10°C to +	70°C		
Mechanical	min. bending radius	static	35 mm		
properties	(over flat side)	dynamic	65 mm		
Fire	Flame retardancy	IEC 60332-1	I-2 and IEC 60332-3-22 Cat. A		
performance	Smoke density	IEC 61034			
	Halogen-free	IEC 60754-2	2		
	No corrosive and toxic fu	ımes			

Single element	Cable outer dimensions	Туре	Weight	Max. pull force long-term	Max. crush resistance long-term	Fire load
mm	mm		kg/km	Ν	N/dm	MJ/m
1.7	2.8 x 4.5	I-V(ZN)HH 2x1	16.5	400	400	0.58
1.8	2.9 x 4.7	I-V(ZN)HH 2x1	17.5	400	400	0.60
2.0	3.1 x 5.2	I-V(ZN)HH 2x1	19.0	600	400	0.63
2.1	3.1 x 5.2	I-V(ZN)HH 2x1	19.0	600	400	0.63
2.5	3.7 x 6.2	I-V(ZN)HH 2x1	26.0	600	600	0.65
2.8	4.0 x 6.8	I-V(ZN)HH 2x1	32.0	600	600	0.83


Breakout cable

FiberConnect[®] I-V(ZN)HH n...

Order no.	See table			
Standardisation	DIN VDE 0888, Part 6 an	d IEC 60 794-2		
Application	Non-metallic, rugged ca	ble for installation in the rising and horizontal		
	indoor area. For direct c	onnector assembly.		
Construction	Cable core	Stranded single elements designed as tight		
		buffered fiber (TB), semi-tight buffered fiber		
		(STB) or superstrip (LB) with non-metallic strain		
		relief elements (aramid) and halogen-free,		
		flame-retardant subcable jacket (Ø see table)		
	Cable jacket	Halogen-free and flame-retardant material		
	Colour of jacket	Orange for multimode, yellow for singlemode		
Thermal	Transport and storage	-25°C to +70°C		
properties	Installation	-5°C to +50°C		
	Operation	-10°C to +70°C		
Fire	Flame retardancy	IEC 60332-1-2 and IEC 60332-3-22 Cat. A		
performance	Smoke density	IEC 61034		
	Halogen-free	IEC 60754-2		
	No corrosive and toxic fumes			
Note	The cable is alternatively	y available with non-metallic rodent protection (B)		

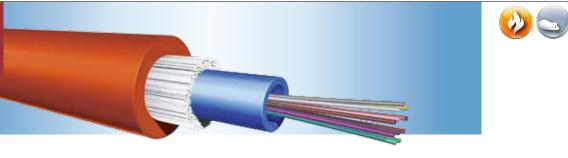
Single cable with 1.8 mm Ø, buffered fiber: TB600, tight buffered fiber with Ø 600 μm Order no. 84 015 \square Z \square

Number of fibers	Outer Ø	Weight	Min. bending radius static	Min. bending radius dynamic	Max. pull force long-term	Max. crush resistance long-term	Fire load
	mm	kg/km	mm	mm	Ν	N/dm	MJ/m
2	6.0	35	60	85	600	800	0.63
4	6.0	35	60	85	600	800	0.63
6	6.9	47	70	105	800	800	0.89
8	8.3	69	85	125	800	800	1.22
10	9.9	105	100	150	800	800	2.01
12	11.0	119	110	165	800	800	2.37
16	10.7	106	110	160	1000	800	2.03
18	11.3	116	115	170	1000	800	2.27

	<u> </u>	W • 1 ·		A41 1 11 11	M 117	N 1 1	
Number of fibers	Outer Ø	Weight	Min. bending radius static	Min. bending radius dynamic	Max. pull force long-term	Max. crush resistance long-term	Fire load
	mm	kg/km	mm	mm	Ν	N/dm	MJ/m
2	6.8	45	70	105	800	1000	1.08
4	6.8	45	70	105	800	1000	1.08
6	8.0	60	80	120	1000	1000	1.15
8	9.4	85	95	145	1000	1000	1.28
10	10.8	125	110	165	1000	1000	1.39
12	12.3	150	125	190	1000	1000	1.54
16	11.6	140	120	180	1000	1000	1.56
18	12.6	160	130	195	1000	1000	1.88
20	14.1	180	145	220	1000	1000	2.07
24	14.6	200	150	225	1000	1000	2.23

 Single cable with 2.0 mm Ø, tight buffered fiber, semi-tight buffered fiber or superstrip fiber with 900 μm

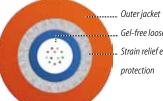
 Order no.
 84 054 □ 0 □ (TB) | 84 054 □ 1 □ (STB) | 84 054 □ 6 □ (LB)


Single cable with 2.1 mm Ø, tight buffered fiber, semi-tight buffered fiber or superstrip buffered fiber with Ø 900 µm Order no. 84 013 0 (TB) | 84 013 1 (STB) | 84 013 6 (LB)

Number of fibers	Outer Ø	Weight	Min. bending radius static	Min. bending radius dynamic	Max. pull force long-term	Max. crush resistance long-term	Fire load
	mm	kg/km	mm	mm	Ν	N/dm	MJ/m
2	7.0	40	70	105	800	1000	1.10
4	7.0	45	70	105	800	1000	1.10
6	8.2	65	80	120	1000	1000	1.18
8	9.6	95	95	145	1000	1000	1.31
10	11.0	135	110	165	1000	1000	1.42
12	12.5	155	125	190	1000	1000	1.57
16	12.0	140	120	180	1000	1000	1.62
18	13.0	160	130	195	1000	1000	2.00
20	14.5	205	145	220	1000	1000	2.10
24	15.0	210	150	225	1000	1000	2.35

Single cable with 2.5 mm Ø, buffered fiber: TB900 or STB900, tight buffered fiber, semi-tight buffered fiber or superstrip buffered fiber with Ø 900 µm Order no. 84 010 □ 0 □ (TB) | 84 010 □ 1 □ (STB) | 84 010 □ 6 □ (LB)

Number of fibers	Outer Ø	Weight	Min. bending radius static	Min. bending radius dynamic	Max. pull force long-term	Max. crush resistance long-term	Fire load
	mm	kg/km	mm	mm	Ν	N/dm	MJ/m
2	7.5	45	75	115	800	1500	1.20
4	7.5	50	75	115	800	1500	1.20
6	9.0	75	90	135	1200	1500	1.36
8	11.0	110	110	165	1200	1500	1.52
10	13.0	160	130	195	1200	1500	1.68
12	14.5	182	145	215	1200	1500	1.80
16	14.0	160	140	210	1200	1500	1.84
18	14.5	175	145	215	1200	1500	1.92
20	16.0	225	160	240	1200	1500	2.16
24	17.0	245	175	260	1200	1500	2.48


Indoor cable with central, gel-free loose tube

FiberConnect® I-D(ZN)BH n... JF

Order no.	84 050 🔲 🗌 🗆			
Standardisation	DIN VDE 0888, Part 6 and	d IEC 60 794-2		
Application			side buildings. Gel-free loose tubes	
	-		ned. Installation in cable ducts,	
	on cable trays or in cable	conduits. Espe	ecially suited for rising areas.	
Construction	Cable core	Gel-free loose tubes with max. 24 fibers		
	Armour	Multi-functional E-glass yarn, water-absorbe		
		as strain relief and rodent protection Halogen-free and flame-retardant material Orange for multimode, yellow for singlemode		
	Cable jacket			
	Colour of jacket			
Thermal	Transport and storage	-25°C to +70°C		
properties	Installation	-5°C to +50	°C	
	Operation	-10°C to +6	0°C	
Mechanical	min. bending radius	static	15 x outside diameter	
properties		dynamic	20 x outside diameter	
	max. pull force	long-term	600 N	
	max. crush resistance	long-term	1500 N/dm	
Fire	Flame retardancy	IEC 60332-1-	2 and IEC 60332-3-22 Cat. A	
performance	Smoke density	IEC 61034		
	Halogen-free	IEC 60754-2		
	No corrosive and toxic fu	imes		

Number of fibers	Outer Ø	Weight	Fire load
	mm	kg/km	MJ/m
12	6.3	44	0.68
24	6.8	49	0.76

Outer jacket Gel-free loose tube Strain relief elements and rodent protection

ch[®] FiberS

vitch FiberS

Office Cables 37

Indoor cable with stranded, gel-free loose tubes

FiberConnect® I-D(ZN)H nxm... JF

Order no.	84 048 🔲 🗌 🗆				
Standardisation	DIN VDE 0888, Part 6 and	d IEC 60 794-2			
Application	Cable for use inside build	uildings. Gel-free loose tubes mean the fibers			
	do not need to be cleane	d. Installation i	n cable ducts, on cable trays		
	or in cable conduits. Espe	or in cable conduits. Especially suited to rising areas.			
Construction	Cable core	e core Glass fiber-reinforced central strength m			
		with strand elements, designed as gel-free loos			
		tubes and if applicable bundle elements			
	Strain relief elements	le jacket Halogen-free and flame-retardant material			
	Cable jacket				
	Colour of jacket				
Thermal	Transport and storage	-25°C to +70°C			
properties	Installation	-5°C to +50°	°C		
	Operation	-10°C to +60)°C		
Mechanical	min. bending radius	static	15 x outside diameter		
properties		dynamic	20 x outside diameter		
	max. pull force	long-term	1000 N		
	max. crush resistance	long-term	2000 N/dm		
Fire	Flame retardancy	IEC 60332-1-2	2 and IEC 60332-3-22 Cat. A		
performance	Smoke density	IEC 61034			
	Halogen-free	IEC 60754-2			
	No corrosive and toxic fu	mes			

Number of tubes	Number of fibers	Outer Ø	Weight	Fire load
		mm	kg/km	MJ/m
1 x m	12	10.5	95	2.00
2 x m	24	10.5	95	2.00
3 x m	36	10.5	95	2.00
4 x m	48	10.5	95	2.00
5 x m	60	10.5	95	2.00
6 x m	72	11.6	115	2.36
8 x m	96	13.1	135	2.48
10 x m	120	14.8	175	3.12
12 x m	144	16.3	215	3.76

You will find universal cables for use inside and outside buildings with loose tube construction or tight buffered fiber construction in the next chapter on outdoor cables.

Outdoor cables

Optical outdoor cables are used in the campus area of local networks (LAN) as well as for bridging over the long distances in the MAN (Metropolitan Area Network) and WAN (Wide Area Network).

Especially high mechanical demands with regard to ruggedness and resistance are placed on outdoor cables to guarantee stability with respect to environmental influences such as frost and humidity. The Fiber Optics business unit offers the right cable for different ambient conditions.

Non-metallic or metallic armour protects the fibers against destruction by rodents and serves as a humidity barrier. The standard outer jacket made of black PE (polyethylene) is halogen-free and UV-resistant. LEONI outdoor cables are certified according to the symbol test in accordance with DIN VDE 0888, Part 3. Universal cables that can be used both indoors and outdoors are frequently recommended for the primary and secondary cabling for local networks (LAN). The universal field of application of these cables avoids interfaces between the campus area and the buildings and does away with the time-consuming splicing, thereby reducing installation times and costs. Universal cables must therefore meet both the requirements profile for outdoor cables as well as the strict fire prevention requirements for indoor cables.

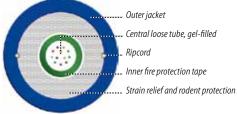
Universal cables with an integrated metallic humidity barrier are also offered for this as appropriate to the environment and installation conditions. Universal cables with an aluminium jacket or corrugated steel jacket are suitable for running directly in the ground, doing away with the need to use a HDPE protective conduit.

The halogen-free and flame-retardant cable jackets of the FiberConnect[®] optical universal cables guarantee adherence with the strict fire prevention requirements for cables for indoor use.

Universal cable with system integrity

FiberConnect® U-D(ZN)BH n...2500 N Order no. 84 040 🔲 🗌 🗌 Standardisation DIN VDE 0888, Part 6 Application Non-metallic, light and flexible cable with increased tensile strength that can be used both inside and outside buildings. Installation in cable ducts, on cable trays or in cable conduits. Construction Loose tube, gel-filled Cable core Inner fire protection tape Armour Multi-functional, strengthened E-glass yarn, water-absorbent as non-metallic strain relief elements and rodent protection Cable jacket Halogen-free and flame-retardant material Colour of jacket Blue Thermal Transport and storage -25°C to +70°C properties Installation -5°C to +50°C -20°C to +60°C Operation Mechanical min. bending radius 15 x outside diameter static properties dynamic 20 x outside diameter 2500 N max. pull force long-term max. crush resistance long-term 3000 N/dm Fire IEC 60332-1-2 and IEC 60332-3-22 Cat. A Flame retardancy performance IEC 61034 Smoke density Halogen-free IEC 60754-2 System integrity for at least 90 minutes No corrosive and toxic fumes Acc. to IEC 60 331-11, IEC 60 331-25 and EN 50200 System in the event of fire integrity test 90 min (VDE test report)

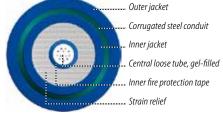
 Max. number of fibers
 Outer Ø
 Weight
 Fire load


 mm
 kg/km
 MJ/m

 12
 10.3
 115
 1.03

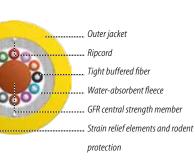
 24
 10.8
 125
 1.28

Rodent-protected universal cable with central loose tube (2500 N) and system integrity in the event of fire



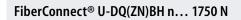
Universal cable with system integrity

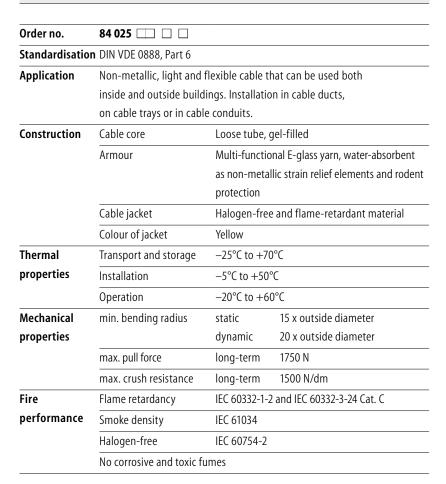
Rodent-protected universal cable with central loose tube (2500 N) and system integrity in the event of fire


Order no.	84 047 📖 🗌 🗌					
Standardisation	DIN VDE 0888, Part 6					
Application	Mechanically rugged cab	le with increa	sed tensile strength			
	that can be used both in:	side and outsi	de buildings.			
	Installation in cable duct	s, on cable tra	ys or in cable conduits.			
Construction	Cable core	Loose tube,	gel-filled			
	Inner fire protection tape	!				
	Strain relief elements	Non-metallio	: (E-glass yarn), water-abso	rbent		
	Inner jacket	Halogen-free and flame-retardant				
	Corrugated steel conduit	As outer fire barrier and rodent protection				
	Outer jacket	Halogen-free and flame-retardant material				
	Colour of jacket	Blue				
Thermal	Transport and storage	-25°C to +7	0°C			
properties	Installation	-5°C to +50	°C			
	Operation	-20°C to +6	0°C			
Mechanical	min. bending radius	static	15 x outside diameter			
properties		dynamic	20 x outside diameter			
	max. pull force	long-term	2500 N			
	max. crush resistance	long-term	2500 N/dm			
Fire	Flame retardancy	IEC 60332-1-	2 and IEC 60332-3-22 Cat.	A		
performance	Smoke density	IEC 61034				
	Halogen-free	IEC 60754-2				
	No corrosive and toxic fun	nes		System integrit or at least 120 min is the event of		
System	Acc. to IEC 60 331-11, IEC 60 331-25 and EN 50200 System 12					
integrity test	120 min		t	or at least 120 min in the event of		
(VDE test report)						

Max. number of fibers	Outer Ø	Weight	Fire load
	mm	kg/km	MJ/m
12	12.5	215	2.8
24	12.5	215	2.8

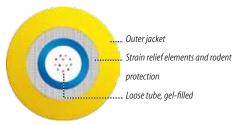
Rodent-protected universal cable with stranded tight buffered fibers




FiberConnect® U-VQ(ZN)BH n...

Order no.	84 950 165 🗌					
Standardisation	DIN VDE 0888, Part 6	DIN VDE 0888, Part 6				
Application	Cable for use both inside	and outside b	uildings.			
	Installation in cable ducts	cts, on cable trays or in cable conduits.				
	Non-metallic universal ca	able for direct of	connector assembly.			
	Suitable for all types of ir	stallation in p	rotective conduits.			
Construction	Cable core	Glass fiber-re	einforced central strength			
		member with	h strand elements,			
		designed as t	tight buffered fibers (TB)			
		and if applica	able dummy elements			
	Armour	Multi-functio	onal, strengthened E-glass yarn,			
		water-absorbent as non-metallic strain relief				
		elements and	d rodent protection			
	Cable jacket	Halogen-free and flame-retardant material				
	Colour of jacket	Yellow				
Thermal	Transport and storage	-25°C to +70)°C			
properties	Installation	-5°C to +50°	°C			
	Operation	-20°C to +60	0°C			
Mechanical	min. bending radius	static	15 x outside diameter			
properties		dynamic	20 x outside diameter			
	max. pull force	long-term	2500 N			
	max. crush resistance	long-term	1000 N/dm			
Fire	Flame retardancy	IEC 60332-1-2 and IEC 60332-3-22 Cat. A				
performance	Smoke density	IEC 61034				
	Halogen-free	IEC 60754-2				
No corrosive and toxic fumes						

Number of fibers	Outer Ø	Weight	Fire load
	mm	kg/km	MJ/m
4	9.4	130	1.03
6	9.4	130	1.03
8	9.4	130	1.03
10	9.8	145	1.21
12	9.8	145	1.21
16	10.8	150	1.37
20	10.8	150	1.37
24	11.1	155	1.44

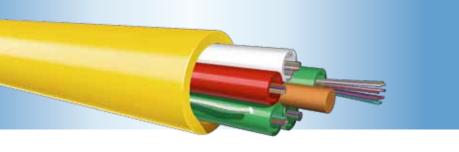

Rodent-protected universal cable with central loose tube (1750 N)

Max. number of fibers	Outer Ø	Weight	Fire load
	mm	kg/km	MJ/m
12	7.0	55	0.71
24	7.5	60	0.79

Outdoor Cables

Rodent-protected universal cable with central loose tube (2500 N)

Outer jacket Ripcord Strain relief elements and rodent protection Loose tube, gel-filled


Order no.	84 032 🔲 🗌 🗌	

FiberConnect® U-DQ(ZN)BH n... 2500 N

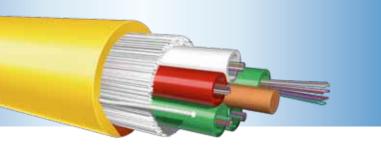
Standardisation	DIN VDE 0888, Part 6				
Application	Non-metallic, light and fl	exible cable w	ith increased tensile strength		
	that can be used both ins	nside and outside buildings.			
	Installation in cable ducts	icts, on cable trays or in cable conduits.			
Construction	el-filled				
	Armour	Multi-functior	nal, strengthened E-glass yarn,		
		water-absorbe	ent as non-metallic strain relief		
		elements and	rodent protection		
	Cable jacket	Halogen-free and flame-retardant material			
	Colour of jacket	Yellow			
Thermal	Transport and storage	–25°C to +70°C			
properties	Installation	-5°C to +50°	C		
	Operation	-20°C to +60	°C		
Mechanical	min. bending radius	static	15 x outside diameter		
properties		dynamic	20 x outside diameter		
	max. pull force	long-term	2500 N		
	max. crush resistance	long-term	3000 N/dm		
Fire	Flame retardancy	IEC 60332-1-2	and IEC 60332-3-22 Cat. A		
performance	Smoke density	IEC 61034			
	Halogen-free	IEC 60754-2			
	No corrosive and toxic fur	nes			

Max. number of fibers	Outer Ø Weight		Fire load	
	mm	kg/km	MJ/m	
12	9.2	100	1.25	
24	9.7	110	1.34	

Universal cable with stranded loose tubes

FiberConnect® U-DH nxm...

Order no.	84 029 📖 🗌 🗌				
Standardisatio	n DIN VDE 0888, Part 6				
Application	Non-metallic cable, can	be used both i	nside and outside buildings.		
	Installation in cable duc	ts, on cable tra	ys or in cable conduits.		
Construction	Cable core	Glass fiber-r	einforced central strength member		
		with strand	elements, designed as loose tubes		
		and if applicable dummy elements			
	Cable jacket	Halogen-free and flame-retardant material			
	Colour of jacket	Yellow			
Thermal	Transport and storage	–25°C to +70°C			
properties	Installation	-5°C to +50°C			
	Operation	−25°C to +6	0°C		
Mechanical	min. bending radius	static	15 x outside diameter		
properties		dynamic	20 x outside diameter		
	max. pull force	long-term	1500 N		
	max. crush resistance	long-term	2000 N/dm		
Fire	Flame retardancy	IEC 60332-1-2			
performance	Smoke density	IEC 61034			
	Halogen-free	IEC 60754-2			
	No corrosive and toxic f	umes			

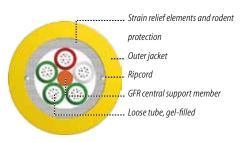


 $\langle \rangle$

Number of tubes	Max. number of fibers	Outer Ø	Weight	Fire load
		mm	kg/km	MJ/m
1 x m	12	10.5	105	2.2
2 x m	24	10.5	105	2.2
3 x m	36	10.5	105	2.2
4 x m	48	10.5	105	2.2
5 x m	60	10.5	105	2.2
6 x m	72	11.0	125	2.6
7 x m	84	11.7	130	2.9
8 x m	96	12.4	145	3.0

Fiber**Tech**®

Rodent-protected universal cable with stranded loose tubes



FiberConnect® U-DQ(ZN)BH nxm...

Order no.	84 033 📖 🗌 🗌					
Standardisatior	DIN VDE 0888, Part 6					
Application	Non-metallic cable, can	be used both i	inside and outside buildings.			
	Installation in cable duct	Installation in cable ducts, on cable trays or in cable conduits.				
Construction	Cable core	Glass fiber-r	einforced support elements			
		with strand	elements, designed as loose tubes			
		and if applic	able dummy elements			
	Armour	Multi-functi	onal, strengthened E-glass yarn,			
	water-absorbent as non-met					
elements and rodent p			d rodent protection			
	Cable jacket	Halogen-fre	e and flame-retardant material			
	Colour of jacket	Yellow				
Thermal	Transport and storage	-25°C to +70°C				
properties	Installation	-5°C to +50°C				
	Operation	-25°C to +6	0°C			
Mechanical	min. bending radius	static	15 x outside diameter			
properties		dynamic	20 x outside diameter			
	max. pull force	long-term	6000 N			
	max. crush resistance	long-term	3000 N/dm			
Fire	Flame retardancy	IEC 60332-1-	2 and IEC 60332-3-22 Cat. A			
performance	Smoke density	IEC 61034				
	Halogen-free	IEC 60754-2				
	No corrosive and toxic fu	imes				

Number of tubes	Max. number of fibers	Outer Ø	Weight	Fire load
		mm	kg/km	MJ/m
1 x m	12	12.5	185	3.1
2 x m	24	12.5	185	3.1
3 x m	36	12.5	185	3.1
4 x m	48	12.5	185	3.1
5 x m	60	12.5	185	3.1
6 x m	72	13.4	200	3.2
8 x m	96	14.4	225	3.4
10 x m	120	15.9	250	3.7
12 x m	144	17.7	305	4.5



Transversely waterproof universal cable with central loose tube

Order no.	84 034 🔲 🗌 🗌			
Application	Can be used both inside	and outside b	uildings. Installation in cable ducts,	
	on cable trays, in cable	conduits or dire	ectly in the ground.	
Construction	Cable core	Loose tube, g	gel-filled	
	Strain relief elements	Non-metalli	c (E-glass yarn), water-absorbent	
	Aluminium tape	For transvers	al water resistance	
	Cable jacket	Halogen-free and flame-retardant material		
	Colour of jacket	Yellow		
Thermal	Transport and storage	-25°C to +70°C		
properties	Installation	-5°C to +50°C		
	Operation	-20°C to +6	0°C	
Mechanical	min. bending radius	static	15 x outside diameter	
properties		dynamic	20 x outside diameter	
	max. pull force	long-term	2500 N	
	max. crush resistance	long-term	1000 N/dm	
Fire	Flame retardancy	IEC 60332-1-	2 and IEC 60332-3-22 Cat. A	
performance	Smoke density	IEC 61034		
	Halogen-free	IEC 60754-2		
	No corrosive and toxic fu	umes		

🤣 🙆 氢

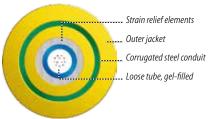
Max. number of fibers	Outer Ø	Weight	Fire load
	mm	kg/km	MJ/m
12	10.8	160	1.50
24	11.3	165	1.57

er**Tech**° F

witch[®] Fib

Outdoor Cables 47

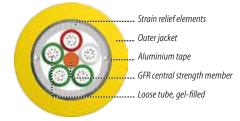
Rodent-protected, transversely waterproof universal cable with central loose tube



FiberConnect® U-DQ(ZN)HWH n...

Order no.	84 030 🗔 🗌 🗌			
Application	Can be used both inside a	and outside bu	uildings. Installation in cable ducts	
	on cable trays, in cable co	cable conduits or directly in the ground.		
Construction	Cable core	Loose tube, g	jel-filled	
	Strain relief elements	Non-metallio	: (E-glass yarn), water-absorbent	
	Inner jacket	Halogen-free	e and flame-retardant	
	Corrugated steel conduit	As highly effective rodent protection		
	Outer jacket Halogen-free and flame-reta		e and flame-retardant material	
	Colour of jacket	Yellow		
Thermal	Transport and storage	–25°C to +70°C		
properties	Installation	-5°C to +50°	°C	
	Operation	-20°C to +60	٥°C	
Mechanical	min. bending radius	static	15 x outside diameter	
properties		dynamic	20 x outside diameter	
	max. pull force	long-term	2500 N	
	max. crush resistance	long-term	2500 N/dm	
Fire	Flame retardancy	IEC 60332-1-2	2 and IEC 60332-3-22 Cat. A	
performance	Smoke density	IEC 61034		
	Halogen-free	IEC 60754-2		
	No corrosive and toxic fur	nes		

Max. number of fibers	Outer Ø	Weight	Fire load
	mm	kg/km	MJ/m
12	12.5	215	2.80
24	12.5	215	2.80


Transversely waterproof universal cable with stranded loose tubes

FiberConnect® U-DQ(ZN)(L)H nxm...

Order no.	84 035 🛄 🗌 🗌				
Application	Can be used both inside	and outside b	uildings. Installation in cable ducts,		
	on cable trays, in cable	n cable conduits or directly in the ground.			
Construction	Cable core	Glass fiber-re	einforced central strength member		
		with strand e	elements, designed as gel-filled loose		
		tubes and if	applicable dummy elements		
	Strain relief elements	Non-metalli	c (E-glass yarn), water-absorbent		
	Aluminium tape	For transvers	sal water resistance		
	Cable jacket	Halogen-free and flame-retardant n			
	Colour of jacket	Yellow			
Thermal	Transport and storage	–25°C to +70°C			
properties	Installation	-5°C to +50°C			
	Operation	-20°C to +6	0°C		
Mechanical	min. bending radius	static	15 x outside diameter		
properties		dynamic	20 x outside diameter		
	max. pull force	long-term	3000 N		
	max. crush resistance	long-term	1500 N/dm		
Fire	Flame retardancy	IEC 60332-1-	2 and IEC 60332-3-22 Cat. A		
performance	Smoke density	IEC 61034			
	Halogen-free	IEC 60754-2			
	No corrosive and toxic fu	umes			

Number of tubes	Max. number of fibers	Outer Ø	Weight	Fire load
		mm	kg/km	MJ/m
1 x m	12	12.1	170	2.73
2 x m	24	12.1	170	2.73
3 x m	36	12.1	170	2.73
4 x m	48	12.1	170	2.73
5 x m	60	12.1	170	2.73
6 x m	72	13.0	190	3.13
8 x m	96	14.4	230	3.28
10 x m	120	15.9	270	3.60
12 x m	144	17.7	320	4.39

Fiber**Tech**®

ber**Switch**®

Rodent-protected, transversely waterproof universal cable with stranded loose tubes

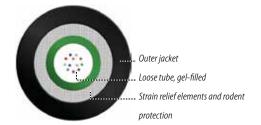
FiberConnect® U-DQ(ZN)WH nxm...

Order no.	84 037 📖 🔲 🗌			
Application	Can be used both inside a	e and outside buildings. Installation in cable ducts, conduits or directly in the ground.		
	on cable trays, in cable co			
Construction	Cable core	Glass fiber-re	einforced central strength member	
		with strand e	elements, designed as gel-filled loose	
		tubes and if	applicable dummy elements	
	Strain relief	Non-metalli	c (E-glass yarn), water-absorbent	
	elements			
	Corrugated steel conduit	As highly effective rodent protection		
	Cable jacket	Halogen-free and flame-retardant material		
	Colour of jacket	Yellow		
Thermal	Transport and storage	-25°C to +70°C		
properties	Installation	-5°C to +50°C		
	Operation	-20°C to +6	0°C	
Mechanical	min. bending radius	static	15 x outside diameter	
properties		dynamic	20 x outside diameter	
	max. pull force	long-term	3000 N	
	max. crush resistance	long-term	2000 N/dm	
Fire	Flame retardancy	IEC 60332-1-	2 and IEC 60332-3-22 Cat. A	
performance	Smoke density	IEC 61034		
	Halogen-free	IEC 60754-2		
	No corrosive and toxic fur	nes		

Number of tubes	Max. number of fibers	Outer Ø	Weight	Fire load
		mm	kg/km	MJ/m
1 x m	12	12.7	200	3.45
2 x m	24	12.7	200	3.45
3 x m	36	12.7	200	3.45
4 x m	48	12.7	200	3.45
5 x m	60	12.7	200	3.45
6 x m	72	16.5	305	4.05
8 x m	96	16.5	305	4.05
10 x m	120	16.5	305	4.05

Strain relief elements Outer jacket Corrugated steel conduit GFR central strength member Loose tube, gel-filled

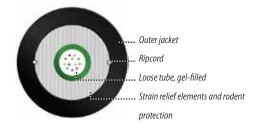
Rodent-protected outdoor cable with central loose tube (1750 N)



FiberConnect[®] A-DQ(ZN)B2Y n... 1750 N

Order no.	84 305 🔲 🗌 🗆			
Standardisation	IEC 60 794-3			
Application	Light, flexible and non-metallic outdoor cable for primary			
	cabling and the backbor	ne area. For pu	lling into conduits,	
	installation on cable tray	ys or directly ir	n the ground.	
Construction	Cable core	Loose tube,	gel-filled	
	Armour	Multi-functi	onal E-glass yarn, water-absorbent	
		as strain relief and rodent protection		
	Cable jacket	PE jacket with imprint		
	Colour of jacket	Black		
Thermal	Transport and storage	-25°C to +70°C		
properties	Installation	-5°C to +50°C		
	Operation	-20°C to +6	0°C	
Mechanical	min. bending radius	static	15 x outside diameter	
properties		dynamic	20 x outside diameter	
	max. pull force	long-term	1750 N	
	max. crush resistance	long-term	1500 N/dm	
Fire	Jacket is halogen-free			
performance	No corrosive and toxic fumes			
Note	The jacket material PE of	fers good prote	ection against transversal water	
	ingress.			

Max. number of fibers	Outer Ø	Weight	Fire load
	mm	kg/km	MJ/m
12	7.0	42	1.11
24	7.5	47	1.20

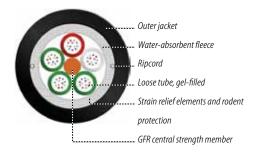

er**Tech**° Fib

Rodent-protected outdoor cable with central loose tube (2500 N)

FiberConnect® A-DQ(ZN)B2Y n... 2500 N

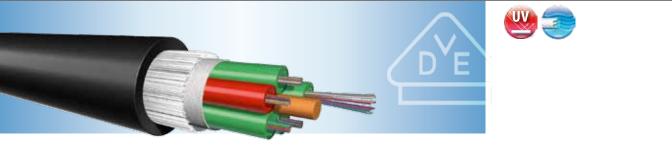
Order no.	84 321 🛄 🗌 🗌			
Standardisation	IEC 60 794-3			
Application	Non-metallic construction	on for primary	cabling and the backbone area.	
	For pulling into conduits	, installation or	n cable trays or directly in the ground.	
Construction	Cable core	Loose tube,	gel-filled	
	Armour	Multi-functi	onal, strengthened E-glass yarn,	
		water-absor	bent as strain relief and rodent	
		protection		
	Cable jacket	PE jacket with imprint		
	Colour of jacket	Black		
Thermal	Transport and storage	–25°C to +70°C		
properties	Installation	-5°C to +50°C		
	Operation	-20°C to +6	0°C	
Mechanical	min. bending radius	static	15 x outside diameter	
properties		dynamic	20 x outside diameter	
	max. pull force	long-term	2500 N	
	max. crush resistance	long-term	3000 N/dm	
Fire	Jacket is halogen-free			
performance	No corrosive and toxic fu	imes		
Note	The jacket material PE of	fers good prote	ection against transversal water	
	ingress.			

Max. number of fibers	Outer Ø	Weight	Fire load
	mm	kg/km	MJ/m
12	9.2	76	1.90
24	9.7	81	2.00


Rodent-protected, dry-core outdoor cable with stranded loose tubes

FiberConnec	t® A-DQ(ZN)B2Y nxm	•••		
Order no.	84 316 🗔 🗌 🗌			
Standardisation	DIN VDE 0888, Part 3 and IEC 60 794-3			
Application	Non-metallic, rugged outdoor cable. Installation-friendly because			
	of the cable core kept free of grease. Installation in conduits,			
	on cable trays or directly in the ground.			
Construction	Cable core	Glass fiber-re	einforced central strength member	
		with strand e	elements, designed as gel-filled	
		loose tubes a	and if applicable dummy elements	
	Water-absorbent fleece			
	Armour	Multi-functional, strengthened E-glass		
		yarn as non-metallic strain relief elements		
		and rodent p	rotection	
	Cable jacket	PE jacket with hot-stamped marking		
	Colour of jacket	Black		
Thermal	Transport and storage	e -40°C to +70°C		
properties	Installation	-5°C to +50°	°C	
	Operation	-40°C to +6	0°C	
Mechanical	min. bending radius	static	15 x outside diameter	
properties		dynamic	20 x outside diameter	
	max. pull force	long-term	4000 N	
	max. crush resistance	long-term	3000 N/dm	
Fire	Jacket is halogen-free			
performance	No corrosive and toxic fu	mes		
Note	The jacket material PE offers good protection against transversal water			
	ingress.			
	Higher fiber numbers and	pull forces on	request.	
	Also available with alumir	nium or corrug	ated steel tape.	

Number of tubes	Max. number of fibers	Outer Ø	Weight	Fire load
		mm	kg/km	MJ/m
1 x m	12	11.4	115	4.1
2 x m	24	11.4	115	4.1
3 x m	36	11.4	115	4.1
4 x m	48	11.4	115	4.1
5 x m	60	11.4	115	4.1
6 x m	72	12.3	135	4.5
8 x m	96	13.7	160	5.0
10 x m	120	15.2	190	5.5
12 x m	144	17.0	230	6.2

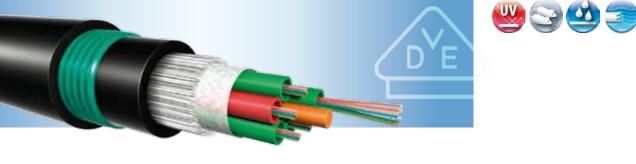

t[®] FiberT

Fiber**Switc**

Outdoor Cables

FO Cables

Grease-filled outdoor cable with stranded loose tubes


FiberConnect® A-DF(ZN)2Y nxm...

Order no.	84 300 📖 🗆 🗆			
Standardisation	DIN VDE 0888, Part 3 and IEC 60 794-3			
Application	Non-metallic, rugged ou	utdoor cable for primary cabling and the backbone		
	area. Installation in cond	uits, on cable tr	rays or directly in the ground.	
Construction	Cable core	Glass fiber-reinforced central strength member		
		with strand elements, designed as gel-filled		
		loose tubes	and if applicable dummy elements.	
		Cable core fi	illed with water-blocking gel.	
	Strain relief element	E-glass yarn		
	Cable jacket	PE jacket wit	th hot-stamped marking	
	Colour of jacket	Black		
Thermal	Transport and storage	-40°C to +70°C		
properties	Installation	−5°C to +50°C		
	Operation	-40°C to +60°C		
Mechanical	min. bending radius	static	15 x outside diameter	
properties		dynamic	20 x outside diameter	
	max. pull force	long-term	\leq 7 strand elements 3000 N	
			> 7 strand elements 4000 N	
	max. crush resistance	long-term	3000 N/dm	
Fire	Jacket is halogen-free			
performance	No corrosive and toxic fu	ımes		
Note	The jacket material PE of	fers good prote	ection against transversal water	
	ingress.			
		ium or corrugate	ed steel tape and copper elements.	

Number of tubes	Max. number of fibers	Outer Ø	Weight	Fire load
		mm	kg/km	MJ/m
1 x m	12	11.4	120	4.3
2 x m	24	11.4	120	4.3
3 x m	36	11.4	120	4.3
4 x m	48	11.4	120	4.3
5 x m	60	11.4	120	4.3
6 x m	72	12.3	135	4.6
8 x m	96	13.7	170	5.1
10 x m	120	15.2	200	5.7
12 x m	144	17.0	240	6.5
16 x m	192	16.8	255	7.4

Rodent-secure, grease-filled outdoor cable with stranded loose tubes

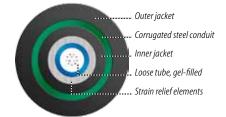
FiberConnect® A-DF(ZN)2YW2Y nxm...

Order no.	84 310 🛄 🗌 🗌			
Standardisation	DIN VDE 0888, Part 3 and IEC 60 794-3			
Application	Rugged outdoor cable for	r primary cabling and the backbone area.		
	Installation in conduits, on cable trays or directly in the ground.			
Construction	Cable core	Glass fiber-reinforced central strength member		
		with strand	elements, designed as gel-filled	
		loose tubes	and if applicable dummy elements.	
		Cable core fi	lled with water-blocking gel.	
	Strain relief element	E-glass yarn		
	Inner jacket (black)	PE jacket		
	Corrugated steel conduit	As highly effective rodent protection		
	Cable jacket	PE jacket with hot-stamped marking		
	Colour of jacket	Black		
Thermal	Transport and storage	-40°C to +7	0°C	
properties	Installation	-5°C to +50	°C	
	Operation	-40°C to +6	0°C	
Mechanical	min. bending radius	static	15 x outside diameter	
properties		dynamic	20 x outside diameter	
	max. pull force	long-term	\leq 7 strand elements 3000 N	
			> 7 strand elements 4000 N	
	max. crush resistance	long-term	3000 N/dm	
Fire	Jacket is halogen-free			
performance	No corrosive and toxic fur	mes		

Number of tubes	Max. number of fibers	Outer Ø	Weight	Fire load
		mm	kg/km	MJ/m
1 x m	12	16.7	275	10.4
2 x m	24	16.7	275	10.4
3 x m	36	16.7	275	10.4
4 x m	48	16.7	275	10.4
5 x m	60	16.7	275	10.4
6 x m	72	18.8	335	12.0
8 x m	96	18.8	335	12.0
10 x m	120	21.8	335	12.5
12 x m	144	21.8	370	13.1
16 x m	192	21.8	380	13.8

Transversely waterproof outdoor cable with central loose tube

幽 🙆


..... Outer jacket Aluminium tape Ripcord Loose tube, gel-filled .. Strain relief elements

Order no.	84 333 🔲 🗌 🗌			
Standardisatio	n DIN VDE 0888, Part 3 an	d IEC 60 794-3		
Application	Light outdoor cable with diffusion barrier. Installation in cable ducts,			
	on cable trays, in cable conduits or directly in the ground.			
Construction	Cable core	Loose tube,	gel-filled	
	Strain relief element	Non-metalli	c (E-glass yarn), water-absorbent	
	Aluminium	For transvers	sal water resistance	
	tape			
	Cable jacket	PE jacket wit	h imprint	
	Colour of jacket	Black		
Thermal	Transport and storage	-25°C to +70°C		
properties	Installation	-5°C to +50	°C	
	Operation	-20°C to +6	0°C	
Mechanical	min. bending radius	static	15 x outside diameter	
properties		dynamic	20 x outside diameter	
	max. pull force	long-term	2500 N	
	max. crush resistance	long-term	1000 N/dm	
Fire	Jacket is halogen-free			
performance	No corrosive and toxic fumes			

Max. number of fibers	Outer Ø	Weight	Fire load
	mm	kg/km	MJ/m
12	10.8	128	1.42
24	11.3	135	1.62

Rodent-protected, transversely waterproof outdoor cable with central loose tube

FiberConnect [®] A-DQ(ZN)2YW2Y n			
Order no.	84 331 📖 🗌 🗌		
Standardisation	DIN VDE 0888, Part 3 and IEC 60 794-3		
Application	Rugged outdoor cable for installation in cable ducts, on cable trays,		
	in conduits or directly in the ground		
Construction	Cable core	Loose tube, gel-filled	

😃 😋 丝 氢

	in conduits or directly in t	the ground		
Construction	Cable core	Loose tube, g	el-filled	
	Strain relief element	Non-metallic (E-glass yarn), water-absorbent		
	Inner jacket (black)	PE jacket		
	Corrugated steel conduit	As highly effective rodent protection		
	Outer jacket	PE jacket with	imprint	
	Colour of jacket	Black		
Thermal	Transport and storage	-40°C to +70°C		
properties	Installation	-5°C to +50°C		
	Operation	-40°C to +60)°C	
Mechanical	min. bending radius	static	15 x outside diameter	
properties		dynamic	20 x outside diameter	
	max. pull force	long-term	2500 N	
	max. crush resistance	long-term	2500 N/dm	
Fire	Jacket is halogen-free			
performance	No corrosive and toxic fur	nes		

Number of fibers	Outer Ø	Weight	Fire load
	mm	kg/km	MJ/m
12	12.5	160	1.8
24	12.5	160	1.8

UV

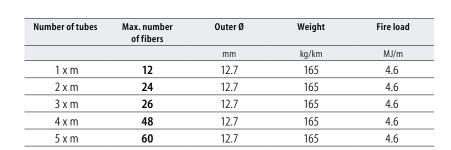
20 🥿

Transversely waterproof outdoor cable with stranded loose tubes

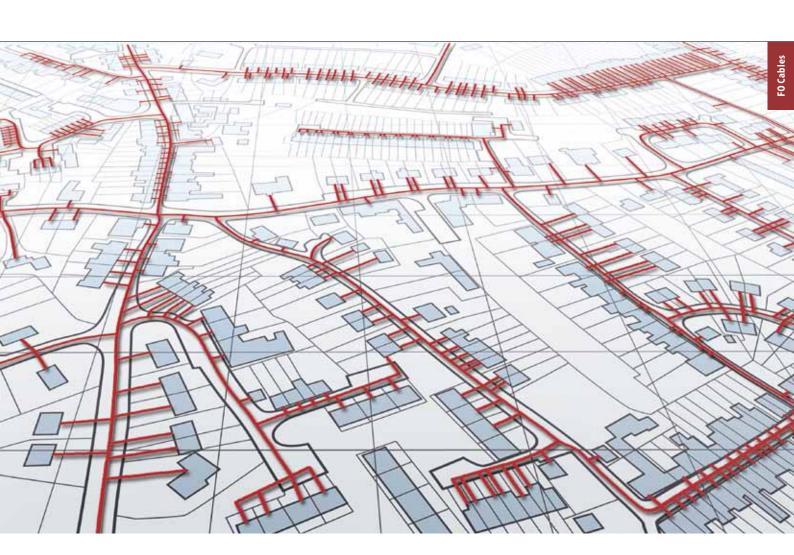
FiberConnect® A-DQ(ZN)(L)2Y nxm...

Order no.	84 326 🔲 🗌 🗌					
Standardisatio	DIN VDE 0888, Part 3 and IEC 60 794-3					
Application	Rugged outdoor cable w	/ith diffusion b	arrier. Installation in cable ducts,			
	on cable trays, in cable o	ectly in the ground.				
Construction	Cable core	Glass fiber-reinforced central strength mem				
		with strand	elements, designed as gel-filled			
		loose tubes	and if applicable dummy elements			
	Strain relief element	Non-metallio	: (E-glass yarn), water-absorbent			
	Aluminium tape	For transvers	al water resistance			
	Cable jacket	PE jacket wit	h hot-stamped marking			
	Colour of jacket	Black				
Thermal	Transport and storage	-40°C to +7	0°C			
properties	Installation	-5°C to +50	°C			
	Operation	-40°C to +6	0°C			
Mechanical	min. bending radius	static	15 x outside diameter			
properties		dynamic	20 x outside diameter			
	max. pull force	long-term	3000 N			
	max. crush resistance	long-term	1500 N/dm			
Fire	Jacket is halogen-free					
performance	No corrosive and toxic fumes					

Number of tubes	Max. number of fibers	Outer Ø	Weight	Fire load
		mm	kg/km	MJ/m
1 x m	12	12.1	140	4.9
2 x m	24	12.1	140	4.9
3 x m	36	12.1	140	4.9
4 x m	48	12.1	140	4.9
5 x m	60	12.1	140	4.9
6 x m	72	13.0	160	5.6
8 x m	96	14.4	200	5.9
10 x m	120	15.9	240	6.4
12 x m	144	17.7	280	7.2



Rodent-protected, transversely waterproof outdoor cable with stranded loose tubes


FiberConnect® A-DQ(ZN)W2Y nxm...

Order no.	84 334 🛄 🗌 🗌					
Standardisatio	DIN VDE 0888, Part 3 and IEC 60 794-3					
Application	Rugged outdoor cable for	ed outdoor cable for installation in cable ducts, on cable trays,				
	in conduits or directly in	the ground				
Construction	onstruction Cable core Glass fiber-reinforced central s		einforced central strength member			
		with strand e	elements, designed as gel-filled			
		loose tubes a	and if applicable dummy elements			
	Strain relief element	Non-metallic (E-glass yarn), water-absorbent				
	Corrugated steel conduit	As highly effective rodent protection				
	Cable jacket	PE jacket with hot-stamped marking				
	Colour of jacket	Black				
Thermal	Transport and storage	-40°C to +7	0°C			
properties	Installation	-5°C to +50°	°C			
	Operation	-40°C to +6	0°C			
Mechanical	min. bending radius	static	15 x outside diameter			
properties		dynamic	20 x outside diameter			
	max. pull force	long-term	3000 N			
	max. crush resistance	long-term	2000 N/dm			
Fire	Jacket is halogen-free					
performance	No corrosive and toxic fur	nes				

😃 😋 丝

FTTH applications

Modern households are demanding higher and higher data rates for communication via the Internet and for the wide range of services offered by providers of broadband applications such as television stations and providers of video-on-demand.

That is why the DSL connections based on copper cables used in households are increasingly yielding to a modern high-speed network based on glass fiber cables, called Fiber To The Home (FTTH).

LEONI has a wide range of cable products specifically tailored to this application. The cables are run directly in the ground or blown into empty conduits installed underground, depending on the method of installation. Blowing cables into empty conduits offers the greatest advantages and has established itself as the standard as it permits the most flexibility when equipping the conduits with different cables, simplifies the development and recabling of complete residential schemes and lowers costs. The cables must be especially thin and light for blowing in. The surface must exhibit optimum sliding properties to permit the longest possible blow-in lengths.

The product range includes stranded cables with a large number of fibers and small outer diameters (MiniCable) as well as drop cables with just two or four fibers with a central loose tube (MicroCable). In addition to these cables for use outdoors, we also offer cables for indoor installation that meet the requirements for fire prevention in buildings. Since extremely narrow bending radii are required for installation in buildings and for the connection technology, innovative singlemode fibers of the type G657 are used for this.

Micro duct cable with central loose tube

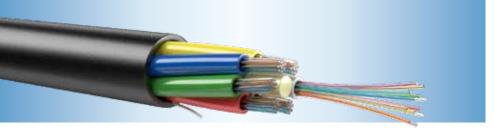
FiberConnect® A-D(ZN)2Y n... MDC

84 344 🔲 🗌 🗌						
IEC 60 794-5						
Mini cable for blowing c	or pulling into mici	o ducts. Th	e outdoor cable			
is light and flexible and	can be installed w	ith minimal	bending radii.			
Cable core	Mini loose tube,	gel-filled				
Strain relief elements	Non-metallic (a	ramid)				
Cable jacket	HDPE with imprint					
Colour of jacket	Black					
Transport and storage	–25°C to +70°C					
Installation	-5°C to +50°C					
Operation	–25°C to +70°C					
min. bending radius*	up to 4 fibers	static	25 mm			
		dynamic	40 mm			
	up to 12 fibers	static	40 mm			
		dynamic	60 mm			
	up to 24 fibers	static	60 mm			
		dynamic	80 mm			
* with bending-resistant	t fibers G657A; ber	ıding radii u	p to 15 mm			
Jacket is halogen-free						
	Mini cable for blowing c is light and flexible and Cable core Strain relief elements Cable jacket Colour of jacket Transport and storage Installation Operation min. bending radius*	Mini cable for blowing or pulling into micris light and flexible and can be installed w Cable core Mini loose tube, Strain relief elements Non-metallic (and Cable jacket Cable jacket HDPE with imprivation of jacket Transport and storage -25°C to +70°C Installation -5°C to +70°C Operation -25°C to +70°C min. bending radius* up to 4 fibers up to 12 fibers up to 24 fibers * with bending-resistant fibers G657A; ber	Mini cable for blowing or pulling into micro ducts. The is light and flexible and can be installed with minimal Cable core Mini loose tube, gel-filled Strain relief elements Non-metallic (aramid) Cable jacket HDPE with imprint Colour of jacket Black Transport and storage -25°C to +70°C Installation -5°C to +50°C Operation -25°C to +70°C min. bending radius* up to 4 fibers static up to 12 fibers static up to 24 fibers static with bending-resistant fibers G657A; bending radiu u static			

performance	No corrosive and toxic fumes
Fire	Jacket is halogen-free

Number of fibers	Outer Ø	Weight	Max. pull force long-term	Max. crush resistance long-term	Fire load
	mm	kg/km	N	N/dm	MJ/m
2	2.0	3.9	300	500	0.18
4	2.0	3.9	300	500	0.18
6	2.3	4.4	300	500	0.22
8	2.3	4.4	300	200	0.22
10	2.5	4.6	300	200	0.26
12	2.5	4.6	300	200	0.26
24	3.9	12.7	450	200	0.51

HDPE outer jacket Central loose tube Strain relief elements

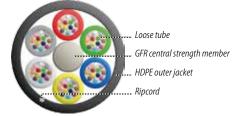

h[®] Fiber**S**v

UV

E

FTTH Cables

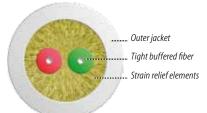
Loose tube mini cable with stranded loose tubes



FiberConnect® A-DQ2Y n... LMTC

Order no.	84 345 🔲 🗌					
Standardisatior	IEC 60 794-5					
Application	Mini cable for blowing o	r pulling into r	micro ducts. The outdoor cable			
	is light and flexible and can be installed with minimal bending					
Construction	Cable core	Glass fiber-reinforced central strength me				
		with strand	elements, designed as gel-filled			
		loose tubes and if applicable dummy elemen				
	Cable jacket	et HDPE with imprint				
	Colour of jacket	Black				
Thermal	Transport and storage	-25°C to +70°C				
properties	Installation	-5°C to +50	°C			
	Operation	-25°C to +7	0°C			
Mechanical	min. bending radius	static	15 x outside diameter			
properties		dynamic	20 x outside diameter			
	max. pull force	long-term	500 N			
	max. crush resistance	long-term	500 N/dm			
	Resistance to impact	3 impacts/2	Nm			
Fire	Jacket is halogen-free					
performance	No corrosive and toxic fumes					

Number of tubes	Max. number of fibers	Outer Ø	Weight
		mm	kg/km
1 x m	12	5.8	26
2 x m	24	5.8	26
3 x m	36	5.8	26
4 x m	48	5.8	26
5 x m	60	5.8	26
6 x m	72	5.8	26
8 x m	96	6.8	39
10 x m	120	7.8	52
12 x m	144	8.8	68


FTTH indoor cable, duplex cable

FiberConnec	t® I-V(ZN)H 2 TB6	00 2.8				
Order no.	84 950 120 🗌					
Standardisation	IEC 60794-2 and DIN VDE 0888 Part 6					
Application	For fixed installation insi	de buildings ir	n cable ducts and conduits			
	as well as for shunting p	s well as for shunting purposes. Suitable for direct connector assembly				
Construction	Cable core	Buffered fibe	er type TB600, diameter 0.6 mm one			
		buffered fiber red, other buffered fibers yello				
		(E9/125), green (G50/125) or blue (G62.5/125)				
	Strain relief elements	Non-metallic (aramid)				
	Cable jacket	Halogen-free and flame-retardant material				
	Colour of jacket	White				
Thermal	Transport and storage	-25°C to +70	0°C			
properties	Installation	-5°C to +50°C				
	Operation	-5°C to +70°	°C			
Mechanical	Outer diameter	2.8 mm				
properties	Weight	7.5 kg/km				
	min. bending radius	static	30 mm			
	with fiber type G657A	dynamic	60 mm			
		static	15 mm			
	max. pull force	long-term	300 N			
	max. crush resistance	100 N/dm				
	Resistance to impact	3 impacts/1	Nm			
Fire	IEC 60332-1-2					
performance	IEC 60332-3-22 Cat A					
	IEC 61034					
	IEC 60754-2					

No corrosive and toxic fumes.

SOLSTICE

Marine Cables

<section-header><section-header><section-header><section-header>Provide the provide subset of the subset of the provide subset of the subset of th

Marine cables

Type approval from Germanischer Lloyd (GL) and Det Norske Veritas (DNV) ensures that the shipyards install optical cables tested and certified in accordance with valid standards. In shipbuilding in particular, the reliable interaction of many components is of crucial importance for trouble-free operation.

It is also vital in the event of fire to be able to rely on the function of the optical cables for a verified period (system integrity).

Rodent-protected universal cable with system integrity (90 min)

FiberConnect® GL U-D(ZN)BH n...

						Outer jacket	
Order no.	84040 🗌 🗌 222	ZGELO			. (Ripcord	
Standardisation	DIN VDE 0888, Part 6 an	d IEC 60 794-2				Loose tube, gel	-fille
Application	Non-metallic, light and	flexible cable v	with approval by Germ	nanischer		Strain relief ele	
	Lloyd and Det Norske Ve			ships		Inner fire protection	cuon
	and offshore facilities in	n safety-related	areas.				
Construction	Cable core	Loose tube,	gel-filled Inner fire pr	otection tape			
	Armour	Multi-functi	onal, strengthened E-g	lass			
		yarn as non-	metallic strain relief el	ements			
	_	and rodent p	protection				
	Cable jacket	Halogen-fre	e and flame-retardant	material			
	Colour of jacket	Orange					
Thermal	Transport and storage	–25°C to +7	0°C				
properties	Installation	-5°C to +50	°С				
	Operation	–20°C to +6	i0°C				
Mechanical	min. bending radius	static	15 x outside diamet	ter			
properties		dynamic	15 x outside diamet	ter			
	max. pull force	long-term	2500 N				
	max. crush resistance	long-term	3000 N/dm				
	max. resistance to impa	ct 10 impacts/	2 Nm				
Fire	Flame retardancy	IEC 60332-1-	-2 and IEC 60332-3-22	Cat. A			
performance	Smoke density	IEC 61034					
	Halogen-free	IEC 60754-2					
	No corrosive and toxic f	umes			1		
System	Acc. to IEC 60 331-11, IEC	60 331-25 and	EN 50200	System in for at least	ntegrity ninutes		
integrity test	90 min			for at least	90 minute ent of fire		
(VDE test report)				in the ev			

🤣 🕓

Max. number of fibers	Outer Ø	Weight	Fire load
	mm	kg/km	MJ/m
12	10.3	115	1.03
24	10.8	125	1.28

riber**Split**

.. FRNC outer jacket .. Optical buffered fiber .. Strain relief element .. GFR central strength member

Fleece wrapping FRNC subcable jacket

Breakout cable

FiberConnect[®] GL AT-V(ZN)H(ZN)H n...

Order no.	See table	See table					
Standardisatio	n DIN VDE 0888, Part 6 and	IEC 60 794-2					
Application	Non-metallic, light and fle	Non-metallic, light and flexible cable with approval by Germanischer Lloyd					
	and Det Norske Veritas (D	and Det Norske Veritas (DNV). For fixed installation on ships and offshore					
	facilities in areas at risk of	facilities in areas at risk of fire.					
Composition	Cable core	GFR central s	trength member with strand ele-				
		ments, designed as semi-tight buffered fiber,					
		gel filled with non-metallic strain relief element					
		(aramid) and halogen-free, flame-retardant					
		subcable jacket (Ø 2.9 mm)					
	Strain relief	Aramid yarns					
	Cable jacket	Halogen-free and flame-retardant material					
	Colour of jacket	Mint green					
Thermal	Transport and storage	-25°C to +80	٥°C				
properties	Installation	-5°C to +50°	°C				
	Operation	-20°C to +80	0°C				
Mechanical	min.bending radius	static	10 x outside diameter				
properties		dynamic	15 x outside diameter				
	max.pull force	long-term	1200 N				
	max. crush resistance	long-term	1000 N/dm				
	max. resistance to impact	10 impacts/2	Nm				
Fire	Non-flammability	IEC 60332-1-	2 and IEC 60332-3-22 Cat. A				
performance	Smoke density	IEC 61034					
	Halogen-free	IEC 60754-2					
	No corrosive and toxic fun	nes					

Max. number of fibers	Outer Ø	Weight	Fire load	Order no.
	mm	kg/km	MJ/m	
2	10.1	85	1.28	84950481 🔲 688 ZGELO
4	10.1	85	1.28	84950478 🔲 688 ZGELO
6	11.8	120	1.59	84950482 🔲 688 ZGELO
8	13.6	160	1.80	84950483 🔲 688 ZGELO
10	15.4	200	2.14	84950484 🔲 688 ZGELO
12	17.2	245	2.48	84950485 🔲 688 ZGELO

Military cables

The military frequently uses optical cables in mobile use for connecting command posts due to their protection against tapping.

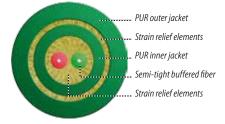
These cables must be resistant to abrasion, reelable at all temperatures and reliably protect the fibers despite their small outer diameter. This type of cable is usually assembled with optical lens connectors.

In addition, optical cables are used in military technology such as tanks and artillery for connecting weapon control systems. These cables have to withstand enormous mechanical stress and temperatures.

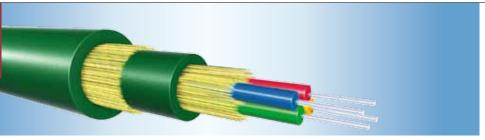
Regardless of whether you need cables for tactical field use or for other special applications - we have the solution.

Military Cables

Mobile field cable

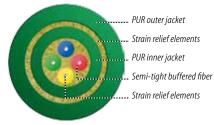


FiberConnect® A-V(ZN)11Y(ZN)11Y 2...


Order no.	84 950 003 🗌					
Standardisation	BWB TL 6020-0001 certified and prEN 177000					
Application	For military tactical field use and inside buildings. For direct connector					
	assembly.					
Construction	Cable core	2 semi-tight buffered fibers, gel-filled				
	Strain relief	Non-metallic (aramid)				
	elements					
	Inner and outer jacket	Polyurethane	e (PUR)			
	Colour of jacket	Green or customer-specific				
Thermal	Transport and storage	–55°C to +80°C				
properties	Installation	-5°C to +50°C				
	Operation	-40°C to +70°C				
Mechanical	Outer diameter	6.0 mm				
properties	Weight	30 kg/km	30 kg/km			
	min. bending radius	static	25 mm			
		dynamic	25 mm			
	max. pull force	long-term	2000 N			
	max. crush resistance	long-term	1000 N/dm			
	Resistance to impact	30 impacts/2 Nm				
Fire	Flame retardancy	IEC 60332-1-2				
performance						
Chemical	Very good resistance to oil, petrol, acids and alkaline solutions					
properties						

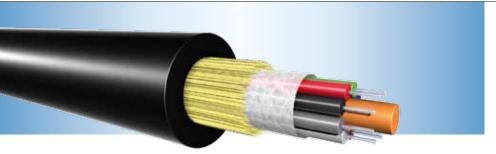
Approved by the German Federal Office of Defence Technology and Procurement (BWB).

Mobile field cable



FiberConnect® A-V(ZN)11Y(ZN)11Y 4...

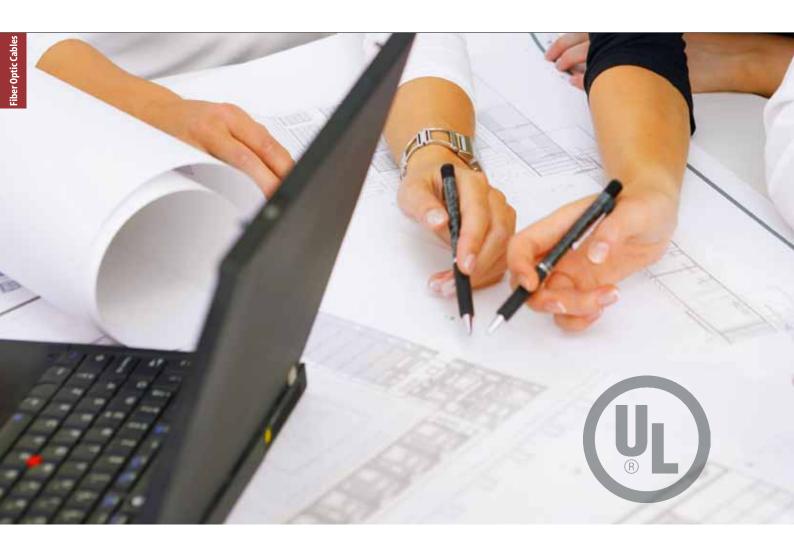
Order no.	84 950 042 🗌					
Standardisation	BWB TL 6020-0001 certified and prEN 177000					
Application	For military tactical field	use and inside	buildings.			
	For direct connector assembly.					
Construction	Cable core	4 semi-tight buffered fibers, gel-filled				
	Strain relief elements	Non-metallic	(aramid)			
	Inner and outer jacket	Polyurethane (PUR)				
	Colour of jacket	Green or customer-specific				
Thermal	Transport and storage	-55°C to +80°C				
properties	Installation	-5°C to +50°	-5°C to +50°C			
	Operation	-40°C to +70°C				
Mechanical	Outer diameter	6.0 mm				
properties	Weight	33 kg/km				
	min. bending radius	static	90 mm			
		dynamic	120 mm			
	max. pull force	long-term	2000 N			
	max. crush resistance	long-term	1000 N/dm			
	Resistance to impact	30 impacts/2 Nm				
Fire	Flame retardancy	IEC 60332-1-2				
performance						
Chemical	Very good resistance to oil, petrol, acids and alkaline solutions					
properties						


Approved by the German Federal Office of Defence Technology and Procurement (BWB).

" Fiber**Sw**

tch FiberSp

Mobile outdoor cable


FiberConnect® A-V(ZN)11Y n...

Order no.	See table below						
Standardisation	DIN VDE 0888, Part 6 and	d IEC 60 794-2					
Application	For mobile and flexible (use outdoors, i	nside buildings and in harsh				
	industrial environments. Suitable for use in drag chains.						
	For direct connector assembly.						
Construction	Cable core GFR central strength member with stra						
		elements, designed as tight buffered fibe					
		and if necess	sary dummy elements				
	Strain relief	Aramid yarns					
	Cable jacket	Polyurethane (PUR)					
	Colour of jacket	Black					
Thermal	Transport and storage	-55°C to +80°C					
properties	Installation	-5°C to +55°	°C				
	Operation	-40°C to +70°C					
Mechanical	min. bending radius	static	10 x outside diameter				
properties		dynamic	15 x outside diameter				
	max. pull force	long-term	2000 N				
	max. crush resistance	long-term	1000 N/dm				
	Resistance to impact	50 impacts/2	2 Nm				
	Drag chain test	1,000,000 cy	vcles				
Fire	Cable is halogen-free						
performance							
Chemical	Very good resistance to c	oil, petrol, acids	and alkaline solutions				
properties							

Max. number of fibers	Outer Ø	Weight	Order no.
	mm	kg/km	
4	6.0	32	84950232 🗌
6	6.0	32	84950403 🗌
8	7.5	52	84950285 🗌
10	8.8	67	84950399 🗌
12	8.8	67	84950314 🗌

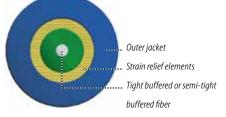
Optical cables with UL approval

Cables with UL (Underwriter Laboratories) Approval

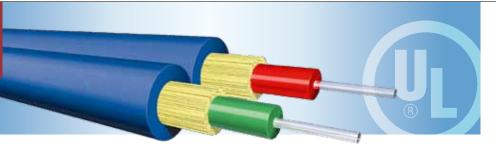
Cables with UL approval guarantee safety and reliability in the intended application areas. They are specifically tailored to the requirements of the North American market, however demand for them is increasing in Asia and Europe, where they are being used more and more. Insurance companies, public authorities, planners and other regulatory authorities above all place their confidence in UL-approved optical cables with singlemode/multimode or plastic fibers.

Optical cables are described in the standard UL 1651-Fiber Optic Cable and categorised according to OFNP (plenum), OFNR (riser) and OFN (general purpose). UL cables have to meet very high requirements for fire performance in particular, including generation of smoke gas.

witch FiberSp


Optical Cables with UL Approval

Simplex indoor cable



FiberConnect® I-V(ZN)H 1... UL OFNR

Order no.	84950407 🗌							
Standardisation	DIN VDE 0888, Part 4 and IEC 60 794-2							
Application	Indoor cable with UL app	roval type OFN	R (riser) for USA and Canada.					
	Ideal for use in distribution systems as well as for connecting termina							
Construction	Cable core	Flame-retardant semi-tight buffered fibe						
		(STB900H)						
	Strain relief elements	Non-metallic	(aramid)					
	Cable jacket	Halogen-free and flame-retardant material						
	Colour of jacket	Blue						
Thermal	Transport and storage	-25°C to +70°	°C					
properties	Installation	–5°C to +50°C						
	Operation	-10°C to +70°C						
Mechanical	Outer dimensions	2.9 mm						
properties	Weight	10.0 kg/km						
	min. bending radius	static	30 mm					
		dynamic	60 mm					
	max. pull force	long-term	400 N					
	max. crush resistance	long-term	150 N/dm					
Fire	UL approval type	OFNR (NEC Ar	ticle 770, UL 1651), c(UL)us					
performance	Flame retardancy	IEC 60332-1-2	and IEC 60332-3-22 Cat. A					
	Smoke density	IEC 61034						
	Halogen-free	IEC 60754-2						
	Fire load	0.18 MJ/m						
	No corrosive and toxic fu	mes						

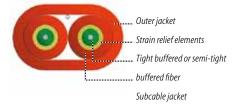
Duplex indoor cable

FiberConnect® I-V(ZN)H 2x1 UL OFNR

der no.	84005017 🗆 🗔 Z	ULOO					
indardisation	DIN VDE 0888, Part 6 and	IEC 60 794-2					
plication	Indoor cable with UL app	roval type OFN	IR (riser) for USA and Canada.				
	Ideal for use in distribution systems as well as for connecting terminals.						
nstruction	Cable core	2 flame-retardant tight buffered fibers					
		(STB 900H)					
	Strain relief elements	Non-metallic	(aramid)				
	Cable jacket	Halogen-free and flame-retardant material					
	Colour of jacket	Blue					
ermal	Transport and storage	-25°C to +70°C					
operties	Installation	n -5°C to +50°C					
	Operation	-10°C to +70°C					
chanical	Outer dimensions	2.8 mm x 5.7 mm					
operties	Weight	15.8 kg/km					
	min. bending radius	static	30 mm				
		dynamic	60 mm				
	max. pull force	long-term	600 N				
	max. crush resistance	long-term	600 N/dm				
e	UL approval type	OFNR (NEC Ar	ticle 770, UL 1651), c(UL)us				
rformance	Flame retardancy	IEC 60332-1-2	and IEC 60332-3-22 Cat. A				
	Smoke density	IEC 61034					
	Halogen-free	IEC 60754-2					
	Fire load	0.36 MJ/m					
	No corrosive and toxic fumes						
echanical operties e rformance	Outer dimensions Weight min. bending radius max. pull force max. crush resistance UL approval type Flame retardancy Smoke density Halogen-free Fire load	2.8 mm x 5.7 15.8 kg/km static dynamic long-term OFNR (NEC Ar IEC 60332-1-2 IEC 61034 IEC 60754-2 0.36 MJ/m	30 mm 30 mm 60 mm 600 N 600 N/dm ticle 770, UL 1651), c(UL)u				

 \bigcirc

Optical Cables with UL Approval


73

Duplex indoor cable

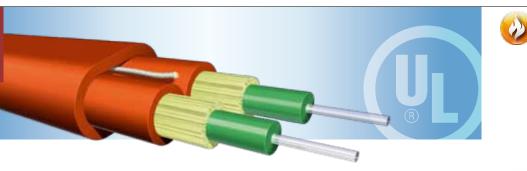
FiberConnect® I-V(ZN)HH 2x1... UL OFNR

Order no.	84011011 🗌 📖 🛛	ZULOO				
Standardisatio	n DIN VDE 0888, Part 6 an	d IEC 60 794-2				
Application	Indoor cable with UL ap	proval type OF	NR (riser). Ideal for use in distribu-			
	tion systems, for connec	ting terminals	as well as for fixed installation.			
Construction	Cable core	Two single-fi	ber cables (STB900) arranged			
		in parallel be	side each other with non-metallic			
		strain relief e	lements (aramid) and halogen-free			
		flame-retardant subcable jacket (Ø 2.5 mm)				
	Cable jacket Halogen-free and flame-retardan					
	Colour of jacket	Orange for m	ultimode, yellow for singlemode			
Thermal	Transport and storage	-25°C to +70)°C			
properties	Installation	-5°C to +50°C				
	Operation	-10°C to +70	-10°C to +70°C			
Mechanical	Outer dimensions	3.7 x 6.2 mm				
properties	Weight	26.0 kg/km				
	min. bending radius	static	35 mm			
	(over flat side)	dynamic	65 mm			
	max. pull force	long-term	600 N			
	max. crush resistance	long-term	600 N/dm			
Fire	UL approval type	OFNR (NEC A	rticle 770, UL 1651)			
performance	Flame retardancy	IEC 60332-1-	2 and IEC 60332-3-22 Cat. A			
	Smoke density	IEC 61034				
	Halogen-free	IEC 60754-2				
	Fire load	0.65 MJ/m				
	No corrosive and toxic fu	ımes				

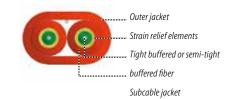
Duplex outdoor cable

FiberConnec	t® AT-V(ZN)YY 2 UL	. AWM Style						
Order no.	84950504 🗌							
Standardisation	DIN VDE 0888, Part 6 and	IEC 60 794-2						
Application	Extremely temperature-s	table and UV-r	esistant outdoor cable,					
	tested acc. to UL VW-1 Fl	ame Test. Ideal	for use in harsh environments					
	such as mobile base stations.							
Construction	Cable core	Stranding consisting of two PVC single cab						
		(TB900A) with non-metallic strain relief						
		elements (aramid) (Ø 2.4 mm)						
	Cable jacket	Flame-retardant polyvinyl chloride (PVC)						
	Colour of jacket	Black						
Thermal	Transport and storage	-55°C to +85°C						
properties	Installation	-20°C to +60°C						
	Operation	-40°C to +85°C						
Mechanical	Outer dimensions	7.0 mm						
properties	Weight	44.0 kg/km						
	min. bending radius	static	70 mm					
		dynamic	105 mm					
	max. pull force	long-term 800 N						
	max. crush resistance	long-term	800 N/dm					
Fire	UL-AWM Style 5432, VW-	1 Flame Test						
performance	Flame retardancy	IEC 60332-1-2						

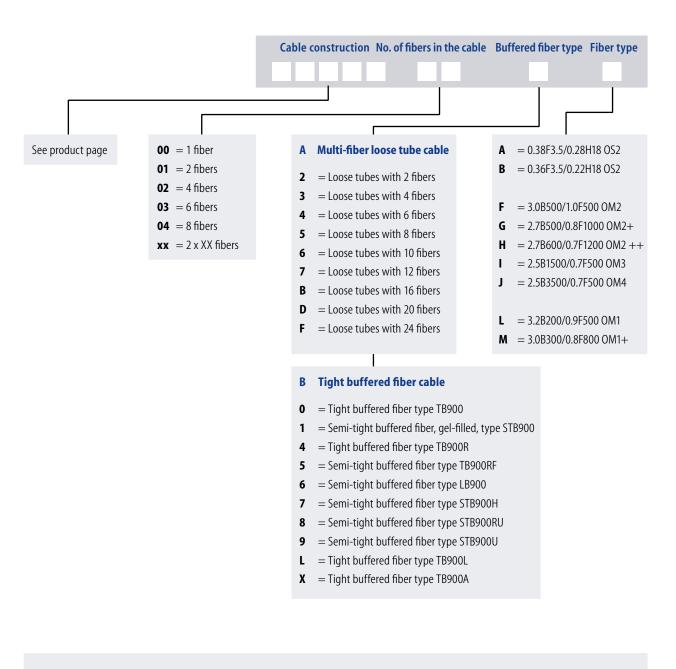
Optical Cables with UL Approval


Duplex outdoor cable

FiberConnect® AT-V(ZN)YY 2... UL OFNR 84950632 🗌 Order no. Standardisation DIN VDE 0888, Part 6 and IEC 60 794-2 Application Extremely temperature-stable and UV-resistant outdoor cable, tested acc. to UL OFNR Flame Test. Ideal for use in harsh environments such as mobile base stations. Construction Cable core Stranding consisting of two PVC single cables (TB900L) with non-metallic strain relief elements (aramid) (Ø 2.4 mm) Cable jacket Flame-retardant polyvinyl chloride (PVC) Colour of jacket Black Thermal -55°C to +85°C Transport and storage properties Installation -20°C to +60°C Operation -40°C to +85°C Outer dimensions Mechanical 7.0 mm properties Weight 44.0 kg/km 70 mm min. bending radius static dynamic 105 mm 1000 N max. pull force short-term 600 N long-term max. crush resistance short-term 220 N/dm long-term 800 N/dm Fire UL approval type OFNR (NEC Article 770, UL 1651) performance Flame retardancy IEC 60332-1-2



Duplex indoor cable


FiberConnect® I-V(ZN)HH 2x1 UL OFN Order no. 84950500 🗌 Standardisation DIN VDE 0888, Part 6 and IEC 60 794-2 Application Indoor cable with UL approval type OFN (general purpose) for USA and Canada. Ideal for use in distribution systems, for connecting terminals as well as for fixed installation. Construction Two single-fiber cables (STB900FR) arranged Cable core in parallel beside each other with non-metallic strain relief elements (aramid) and halogen-free, flame-retardant subcable jacket (Ø 2.0 mm) Cable jacket Halogen-free and flame-retardant material Colour of jacket Orange for multimode, yellow for singlemode Thermal Transport and storage -25°C to +70°C properties Installation -5°C to +50°C Operation -10°C to +70°C Mechanical Outer dimensions 3.0 x 5.0 mm properties Weight 18.5 kg/km min. bending radius static 30 mm (over flat side) dynamic 60 mm max. pull force long-term 600 N max. crush resistance long-term 1000 N/dm OFN (NEC Article 770, UL 1651), c(UL)us Fire UL approval type performance Flame retardancy IEC 60332-1-2 and IEC 60332-3-22 Cat. A Smoke density IEC 61034 IEC 60754-2 Halogen-free Fire load 0.62 MJ/m

No corrosive and toxic fumes

www.leoni-fiber-optics.com

h° Fiber**Swit**

Orc	ler e	exan	nple	S					
8	4	0	1	0	0	4	0	G	I-V(ZN)HH 8G50/125
8	4	0	3	2	0	2	3	L	U-DQ(ZN)BH 4G62.5/125

FO Cables

77

Glass fiber assembly

Almost all connectors can be combined with the cables listed on pages 18–76.

Lengths \geq 100 m are supplied on plywood reels as standard, smaller lengths as a ring.

In the case of multi-fiber loose tube cables, the assembly can be equipped with the economical "Easy Pull" cabling system (see page 130/131) or the extremely rugged "Heavy Trunk" cabling system (see page 81). Customer-specific requirements for pulling tool, connector protection, identification, packaging, labelling, boot colour, length, length tolerance, whip length and whip length tolerance are possible whether taking delivery of a single unit or a high volume.

Various components can also be installed in 19" slots or vertical slot modules on request.

Typical values:

FO Cables

79

Connector type	SM (E9/125)	MM (G50/125) in OM2, OM3 and OM3e	MM (G62.5/125) in OM1 and OM1e	MM with 140 μ cladding
ST/SPC	~	>	~	On request
ST/UPC	~	>	>	On request
SC/SPC	~	>	~	~
SC/UPC	~	~	~	~
SC/APC 8°	~	~	 ✓ 	~
SC/APC 9°	~	>	~	~
SCRJ/SPC	~	>	>	~
SCRJ/UPC	~	>	>	~
SCRJ/APC 8°	~	~	~	~
SCRJ/APC 9°	~	~	~	~
LC/SPC	~	>	~	On request
LC/UPC	~	~	~	On request
LC/APC 8°	~	<	~	On request
LC-uniboot I/SPC	~	<	~	On request
LC-uniboot I/UPC	~	<	 ✓ 	On request
LC-uniboot I/APC 8°	~	>	~	On request
LC-uniboot II/SPC	~	>	~	On request
LC-uniboot II/UPC	~	>	>	On request
LC-uniboot II/APC 8°	~	~	 ✓ 	On request
FC/SPC	~	<	~	 ✓
FC/UPC	~	>	~	 ✓
FC/APC 8°	~	~	~	 ✓
DIN/SPC	~	~	~	On request
DIN/UPC	~	~	v	On request
DIN/APC 8°	v	>	v	On request
FSMA 905	~	~	 ✓ 	 ✓
FSMA 906	~	~	v	On request
MTRJ female	v	~	>	×
MTRJ male	~	~	v	×
E2000/UPC™	v	>	 ✓ 	On request
E2000/APC 8°™	v	~	v	On request
E2000/UPC compact™	v	~	v	On request
E2000/APC 8° compact™	~	~	~	On request

Assembly and sale of component parts for the following connector types:

Connector type IL IL RL Form fidelity (max.) (min.) (typ.) MM/SPC $\leq 0.2 \text{ dB}$ $\leq 0.3 \text{ dB}$ ≥ 35 dB ≤ 0.3 dB MM/UPC $\leq 0.2 \text{ dB}$ \geq 40 dB MM/APC $\leq 0.2 \text{ dB}$ \leq 0.3 dB \geq 50 dB ≤ 0.3 dB SM/SPC ≤ 0.2 dB ≥ 35 dB SM/UPC $\leq 0.2 \text{ dB}$ \leq 0.3 dB \geq 50 dB SM/APC $\leq 0.2 \text{ dB}$ \leq 0.3 dB \geq 70 dB According to IEC 61300-3-15 MTRJ SM ≤ 0.3 dB ≥ 35 dB $\leq 0.3 \text{ dB}$ IEC 61300-3-16 MTRJ MM \leq 0.3 dB \geq 20 dB $\leq 0.3 \text{ dB}$ IEC 61300-3-23 LC-uniboot MM/SPC $\leq 0.3 \text{ dB}$ $\leq 0.5 \text{ dB}$ \geq 35 dB LC-uniboot MM/UPC \leq 0.3 dB $\leq 0.5 \text{ dB}$ \geq 40 dB LC-uniboot MM/APC $\leq 0.5 \text{ dB}$ $\leq 0.3 \text{ dB}$ \geq 50 dB LC-uniboot SM/SPC $\leq 0.5 \text{ dB}$ $\leq 0.6 \text{ dB}$ \geq 35 dB LC-uniboot SM/UPC $\leq 0.5 \text{ dB}$ $\leq 0.6 \text{ dB}$ \geq 50 dB LC-uniboot SM/APC $\leq 0.5 \text{ dB}$ \leq 0.6 dB \geq 70 dB

Almost all connector types can be assembled on buffered fibers with a diameter of 0.6 to 0.9 mm and 1.8 to 3.5 mm. E2000 type: R&M, SCRJ available as IP20 or IP67.

Heavy trunk Divider for multi-fiber loose tube cables

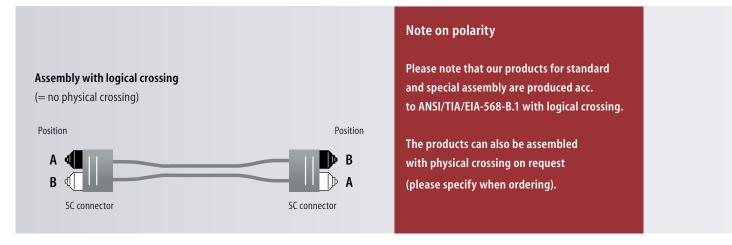
Applications

Building cabling, computer center cabling, indoor cabling, outdoor cabling, industrial cabling

Properties

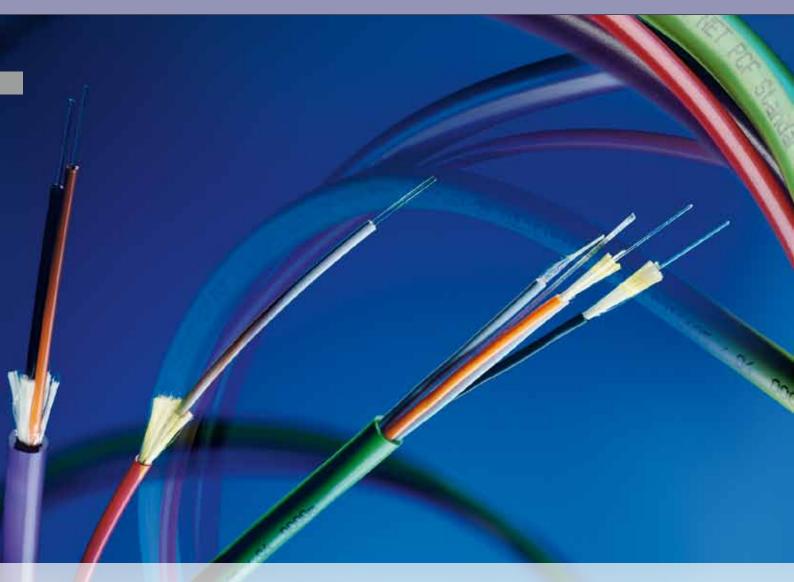
- Multi-fiber loose tube cable with factory-assembled connectors
- Extremely robust divider heads
- Graduated whip lengths to save space
- Whips same colour as the fiber
- Bundle marking close to the divider head
- Water and dust-tight acc. to IP67
- Tensile strength of the pulling tool = 1000 N
- Tensile strength of the divider head > 4000 N
- Crush resistance of the pulling tool = 20 kg/cm²
- Crush resistance of the divider head \geq 200 kg/cm²
- The thermal resistance is at least equal to that of the assembled cable
- Divider head with square countersinking for quick and tool-free installation in 19" racks

Lengths


Nominal length between the connectors of the two longest whips

Length tolerances

< 30m	±50 cm
30–100 m	±100 cm
> 100 m	±2%


Delivery format

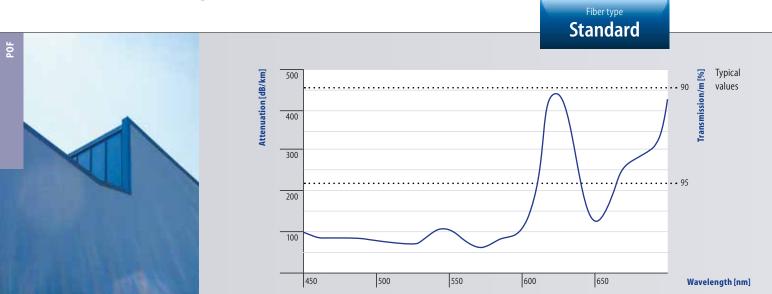
- Lengths < 50 m as a ring, larger lengths on plywood reel
- Test certificate with serial number, tester, test date, length, fiber type, connector type, cable batch, IL and RL
- OTDR test certificate on request

Polymer optical fibers

Polymer optical fibers (POF) have been on the market for many years. Both the fiber core and the cladding are made of polymer. Key advantages of polymer optical fibers are high flexibility (high alternate bending resistance with smaller bending radii) as well as more economical connecting and transmission technology than in the case of glass.

Moreover, this type of fiber also has all the major benefits of a fiber optical cable connection: **EMC security**, **clear galvanic separation**, **no crosstalk**, **low weight**, **etc.** POF can by now be used to bridge distances up to 70 metres, which is normally sufficient for both industrial environments and smaller office as well as home networks. It is even possible to cover distances up to 150 metres by selecting suitable active components.

Globally unparalleled quality assurance


LEONI performs a 100% final check of optical attenuation on all POF cables in series production. This enables us to guarantee first-class quality for our products. Attenuation measurements on entire cable drums (250 and 500 m) represent a particular challenge due to the high optical attenuation of the POF. LEONI uses a measurement system specifically developed for this purpose with an extremely high attenuation budget at 650 nm.

POF Polymer optical fibers

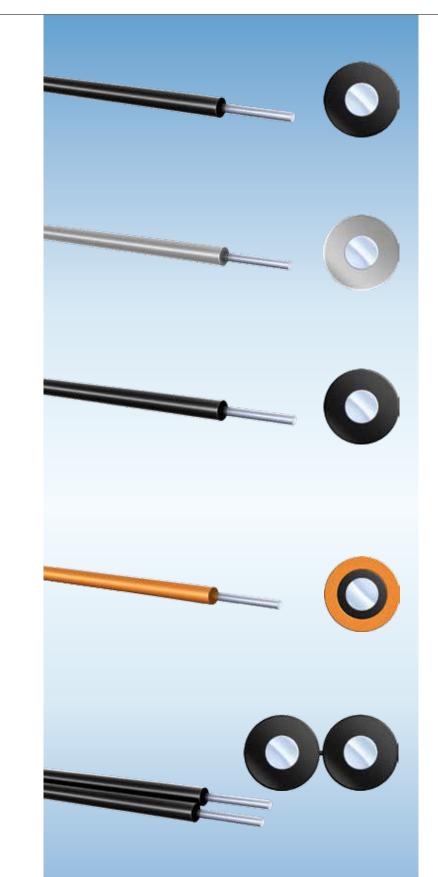
POF fiber specifications	84
POF cables	86
V-2Y 1P980/1000	86
V-Y 1P980/1000	86
V-4Y 1P980/1000	86
V-4Y 1P980/1000	86
V-2Y 2x1P980/1000	86
I-V4Y(ZN)11Y 1P980/1000 HEAVY	88
I-VY(ZN)Y 1P980/1000	88
I-V2Y(ZN)11Y 1P980/1000	88
I-V2Y(ZN)11Y 1P980/1000	88
I-V2Y(ZN)HH 2x1P980/1000	88
I-V2Y(ZN)H 2x1P980/1000	90
I-V4Y(ZN)11Y 2P980/1000 HEAVY	90
I-V2Y(ZN)Y 2P980/1000	90
I-V2Y(ZN)11Y 2P980/1000	90
I-V2Y(ZN)11Y 2P980/1000	90
I-V4Y(ZN)11Y 2P980/1000	92
I-(ZN)V2Y11Y 2P980/1000 +2x1.0qmm	92
AT-(ZN)V2Y2Y 2P980/1000	92
I-(ZN)V4Y11Y 2P980/1000 + 2x1.0qmm	92
I-V4Y11Y 4P980/1000	92
I-(ZN)V4Y11Y 2P980/1000 +4x1.5qmm	94
I-(ZN)V4YY 2P980/1000 +3x1.5qmm	94
I-V4Y(ZN)11Y 1P980/1000 6.0 mm UL AWM Style 5422	96
I-V2Y(ZN)11Y 1P980/1000 5.5 mm UL AWM Style 5422	96
I-V4Y(ZN)11Y 2P980/1000 FLEX UL AWM Style 5422	96

LEONI Dacar® FP automotive cables	98
LEONI Dacar® FP	100
MOST-Insert Pin POF	100
MOST-Insert Socket POF	100
LEONI Dacar® FP assembly	101
LEONI Dacar® FP Golden Fiber	101
POF connectors	102
F05 connector POF	102
F07 connector POF	102
FSMA connector POF	102
HP connector POF	104
HP connector duplex POF	105
Anti-kink protecting sleeve for HP connectors	105
ST connector (BFOC) POF	106
SC connector POF	106
MIP connector POF	106
SCRJ connector duplex IP20	106
POF couplings	107
Coupling for F05 POF	107
Coupling for F07 POF	107
Coupling for FSMA POF	107
Coupling for ST POF	107
Coupling for HP POF	107
Coupling for SC POF	107
Pre-assembled POF cables	108
POF position switch	109
Order number scheme for POF cable assembly	109

POF fiber specifications

Standard POF is made of a super pure polymethylmethacrylate (PMMA) fiber core, which is cladded with a fluoropolymer jacket. The large fiber core facilitates coupling to transmitter and receiver elements and allows the use of low-cost connector systems, some of which have been specially developed for plastic fiber optics.

LEDs in the wavelength range of 650 to 670 nm are used as transmitter elements. POF has a relative attenuation minimum of 160 dB/km in this range. This attenuation can be slightly increased depending on the cable design. PIN diodes are used as receivers at the other end of the transmission path. Because of the attenuation, the link length is typically limited to less than 100 m. Nowadays, green LEDs are used to get a smaller attenuation of about 100 dB/km. The attenuation minimums of the POF are in the green, yellow and red wavelength range.


]	Standard POF					
Order no.	84860101B	84860102B	84860103B	84860104B	84860105B	84860106B
Designation	P240/250	P486/500	P735/750	P980/1000	P1470/1500	P1960/2000
Designation to IEC 60793-2		A4c	A4b	A4a		
Geometric/thermal properties						
Core diameter	$240\pm23~\mu m$	$486\pm30\ \mu\text{m}$	735 ± 45 μm	$980\pm60\mu\text{m}$	$1470\pm90~\mu m$	$1960\pm120~\mu m$
Jacket diameter	250 ± 23 μm	500 ± 30 μm	750 ± 45 μm	1000 ± 60 μm	1500 ± 90 μm	$2000\pm120~\mu m$
Operating temperature	-55°C to +70°C	-55°C to +70°C	-55°C to +70°C	–55°C to +85°C	-55°C to +70°C	–55°C to +70°C
Transmission properties						
Wavelength	650 nm	650 nm	650 nm	650 nm	650 nm	650 nm
max. attenuation	300 dB/km	200 dB/km	180 dB/km	160 dB/km	180 dB/km	180 dB/km
min. bandwidth (MHz $ imes$ 100 m)				10		
Numerical aperture	0.5	0.5	0.5	0.5	0.5	0.5

The numerical aperture of the fiber as well as the temperature resistance can be changed by using different cladding materials. High NA POF (fibers with a higher numerical aperture) permit higher power coupling in the fiber. However increasing the NA results in a lower bandwidth. POF fibers are subject to natural aging (see the chapter Principles of fiber optics from page 190). The maximum operating temperature of standard POF is restricted to 85°C by the cladding material. The temperature resistance can be increased up to 105°C by using another cladding material. However this also increases the kilometric attenuation slightly. The PMMA core material is the limiting factor for even higher temperatures.

High NA POF		High-temperature POF			
Order no.	84860115B	84860131B	84860130B		
Designation	P980/1000 high NA	P980/1000 high-temperature POF	P485/500 high-temperature POF		
Designation to IEC 60793-2					
Geometric/thermal properties					
Core diameter	$980\pm60\mu\text{m}$	$_{-}$ 980 \pm 60 μ m	$485\pm30~\mu m$		
Jacket diameter	$1000\pm 60~\mu m$	$1000\pm60\mu\text{m}$	$500\pm30\mu\text{m}$		
Operating temperature	-40°C to +85°C	−55°C to +105°C	-55°C to +105°C		
Transmission properties					
Wavelength	650 nm	650 nm	650 nm		
max. attenuation	160 dB/km	200 dB/km	200 dB/km		
min. bandwidth (MHz \times 100 m)					
	0.6	0.58	0.58		

POF cables

V-2Y 1P980/1000

Order no.	84A00100S000
Code no.	11
Application	Light mechanical stress
Assembly	Direct connector assembly
Length	2100 m

V-Y 1P980/1000Order no.84A002005777Code no.14ApplicationLight mechanical stressAssemblyDirect connector assemblyLength500 m

V-4Y 1P980/1000

Order no.	84A00300S000
Code no.	12
	For heavy mechanical stress
Application	and highly flexible applications
	with small bending radii
Assembly	Direct connector assembly
Length	5000 m

V-4Y 1P980/1000

Order no.	84A00300S262
Code no.	16
	For heavy mechanical stress
Application	and highly flexible applications
	with small bending radii
Assembly	Direct connector assembly
Length	500 m

V-2Y 2x1P980/1000 order no. 84B001005000 Code no. 13 Application Light mechanical stress

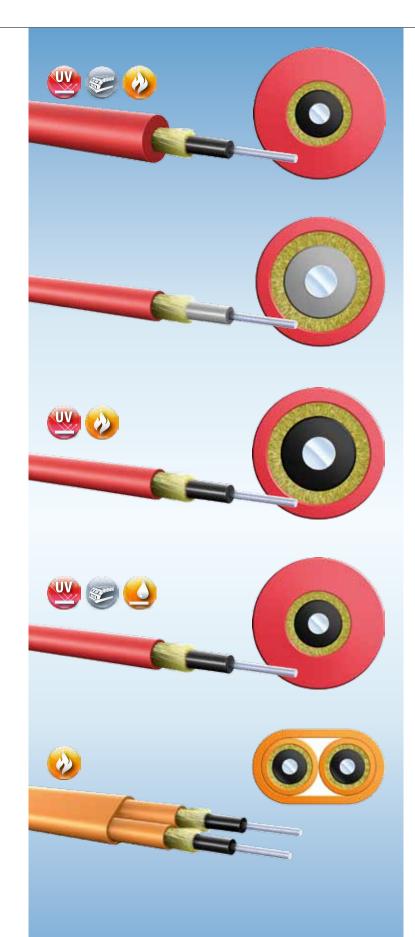
Application	Light mechanical stress
Assembly	Direct connector assembly
Length	500 m

POF Cables

With POF cables with multiple buffered fibers, different buffer tube colours can be used for better differentiation. This technical solution is more easily distinguishable and more economical than uniformly black buffered fibers with printed identification and therefore offers the user major advantages during installation.

POF cables in colour

POF cables from the 84A00100SXXX series are now available in different colours according to the customer's wishes.



Order table for colours				
Colour	Order no.	Colour	Order no.	
black	84A00100S000	blue	84A00100S555	
yellow	84A00100S111	green	84A00100S666	
orange	84A00100S222	grey	84A00100S777	
red	84A00100S333	brown	84A001005888	
violet	84A00100S444	white	84A00100S999	

POF cable specifications		V-2Y 1P980/1000	V-Y 1P980/1000	V-4Y 1P980/1000	V-4Y 1P980/1000	V-2Y 2x1P980/1000	
			84A00100S000	84A00200S777	84A00300S000	84A00300S262	84B00100SXXX
Order no.							(see table)
	Buffer tube material		PE	PVC	PA	PA	PE
Composition	No. of POF elements (980/1000 µm)		1	1	1	1	2
	Outer Ø [mm]		2.2	2.2	2.2	2.2	2.2 × 4.4
	min handing radius [mm]	during installation	25	25	20	20	25
Mechanical	min. bending radius [mm]	long-term	25	25	20	20	25*
		short-term	15	15	60	60	20
properties	max. pull force [N]	long-term	5	5	10	10	10
	Approx. cable weight [k	g/km]	3.8	3.8	4.3	4.3	7.6
Thermal	Operating temperature [°C]		-55 to +85	-40 to +85	-55 to +85	-55 to +85	-55 to +85
properties			-55 10 +65		-55 (0 + 65	-55 10 -65	-55 10 +65
Attenuation	[dB/km] at 650 nm (laser)		<160	<160	<160	<160	<160
	[dB/km] at 660 nm (LED)		<230	<230	<230	<230	<230

* over flat side

I-V4Y(ZN)11Y 1P980/1000 HEAVY

Order no.	84C00100S333	
Code no.	21	
	in harsh industrial environments,	
Application	suitable for drag chains	
Assembly Direct connector assembly		
Length 500 m		

I-VY(ZN)Y 1P980/1000

Order no.	84C00200S333
Code no.	26
	Flexible applications
Application	with low dynamic stress
Assembly	Direct connector assembly
Length 500 m	

I-V2Y(ZN)11Y 1P980/1000

Order no.	84C00800S333	
Code no.	23	
	Flexible applications	
Application	with low dynamic stress	
Assembly	Direct connector assembly	
Length	500 m	

I-V2Y(ZN)11Y 1P980/1000

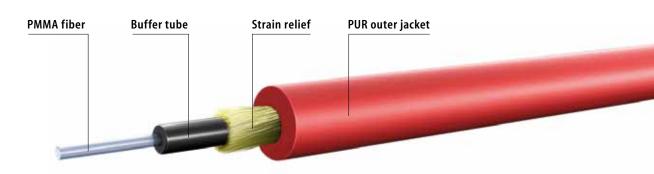
Order no.	84C01000S333	
Code no.	22	
	in harsh industrial environments,	
Application	suitable for drag chains	
Assembly	Direct connector assembly	
Length	500 m	

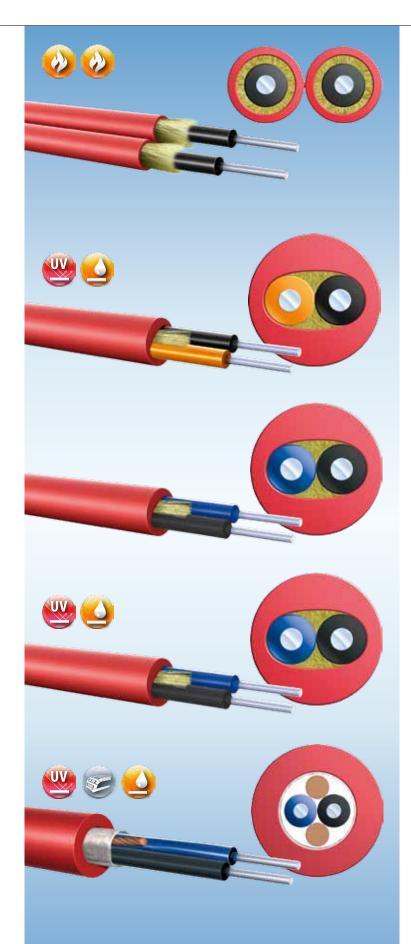
I-V2Y(ZN)HH 2x1P980/1000

(,	
Order no.	84D00900S222
Code no.	32
	Flexible applications
Application	with low dynamic stress,
	for fixed installation
Assembly	Direct connector assembly
Length	500 m

POF Cables 89

POF cables are available for indoors and outdoors. A wide range of constructions are available depending on the requirement. Special requirements in terms of flexibility, resistance to oil, resistance to UV, freedom from halogen or flame retardancy are met by selecting suitable components.


POF cables are divided into the following fiber groups:


POF buffered fibers: Step index standard Step index POF with low/high NA Step index for high temperature Step index for fast Ethernet Gradient index

POF cable specifications		I-V4Y(ZN)11Y 1P980/1000 HEAVY	I-VY(ZN)Y 1P980/1000	I-V2Y(ZN)11Y 1P980/1000	I-V2Y(ZN)11Y 1P980/1000	I-V2Y(ZN)HH 2x1P980/1000	
Order no.			84C00100S333	84C00200S333	84C00800S333	84C01000S333	84D00900S222
	Buffer tube material		PA	PVC	PE	PE	PE
Composition	Outer jacket material	Outer jacket material		PVC	PUR	PUR	FRNC
Composition	No. of POF elements (980	/1000 μm)	1	1	1	1	2
	Outer Ø [mm]		6.0	3.6	3.6	6.0	4.7 × 8.2
		during installation	50	70	70	70	70
Mechanical		long-term	30	50	50	50	50*
properties		short-term	500	250	250	400	400
properties		long-term	200	100	100	100	100
	Approx. cable weight [kg	ı/km]	32	12	11	32	43
Thermal properties	Operating temperature [°C]		-20 to +70	-20 to +70	-20 to +70	-20 to +70	-20 to +70
Attenuation	nuation [dB/km] at 650 nm (laser) [dB/km] at 660 nm (LED)		<160	<190	<160	<160	<190
Attenuation			<230	<290	<230	<230	<290
							* over flat side

I-V2Y(ZN)H 2x1P980/1000

Order no.	84D03000S222
Code no.	31
	Flexible applications
Application	with low dynamic stress,
	for fixed installation
Assembly	Direct connector assembly
Length	500 m

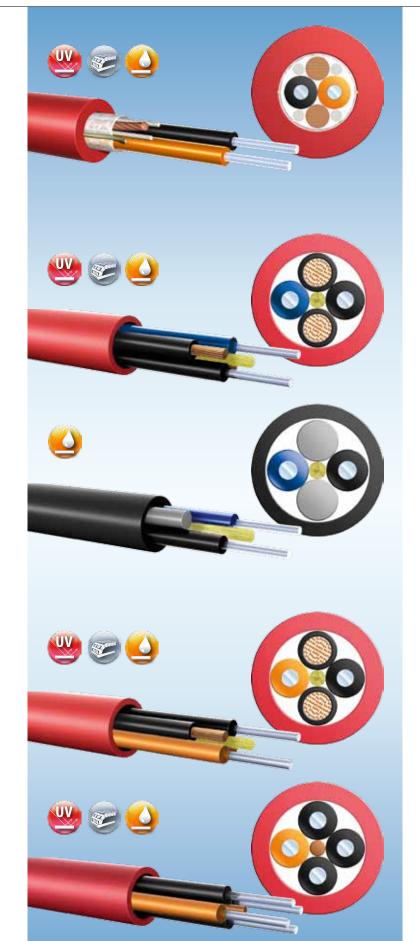
I-V4Y(ZN)11Y 2P980/1000 HEAVY

Order no.	84D01100S333
Code no.	24
Application	in harsh industrial environments
Assembly	Direct connector assembly
Length	500 m

I-V2Y(ZN)Y 2P980/1000

Order no.	84D01600S333	
Code no.	33	
	Flexible applications	
Application	with low dynamic stress,	
	for fixed installation	
Assembly	Direct connector assembly	
Length	500 m	

I-V2Y(ZN)11Y 2P980/1000 Order no. 84D020005333


	010020000000
Code no.	34
Application	in harsh industrial environments
Assembly	Direct connector assembly
Length	500 m

I-V2Y(ZN)11Y 2P980/1000 FLEX Order no. 84D00500S333 Code no. 25 Application in harsh industrial environments, suitable for drag chains Assembly Direct connector assembly Length 500 m Variants Dummy elements can be replaced by copper elements

POF cable specifications		I-V2Y(ZN)H 2x1P980/1000	I-V4Y(ZN)11Y 2P980/1000 HEAVY	I-V2Y(ZN)Y 2P980/1000	I-V2Y(ZN)11Y 2P980/1000	I-V2Y(ZN)11Y 2P980/1000 FLEX	
Order no.			84D03000S222	84D01100S333	84D01600S333	84D02000S333	84D00500S333
	Buffer tube material		PE	PA	PE	PE	PE
Composition	Outer jacket material No. of POF elements (980/1000 µm)		FRNC	PUR	PVC	PUR	PUR
Composition			2	2	2	2	2
	Outer Ø [mm]		3.6 x 7.5	6.0	6.0	5.6	6.4
	-	during installation	70	60	90	90	90
Mechanical		long-term	50*	40	60	60	60
properties		short-term	400	500	400	400	200
properties		long-term	100	200	100	100	100
	Approx. cable weight [kg/km]		28	33	54	28	30
Thermal properties	Operating temperature [°C]		-20 to +70	-20 to +70	-20 to +70	-20 to +70	-20 to +70
Attenuation	[dB/km] at 650 nm (laser)		<190	<160	<200	<200	<220
Attenuation	[dB/km] at 660 nm (LED)		<290	<230	<290	<290	<350
			* over flat side				

* over flat side

I-V4Y(ZN)11Y 2P980/1000 FLEX

Order no.	84D00300S383
Code no.	36
Application	in harsh industrial environments,
	suitable for drag chains
Assembly	Direct connector assembly
Length	500 m
Variants	Dummy elements can be replaced
	by copper elements

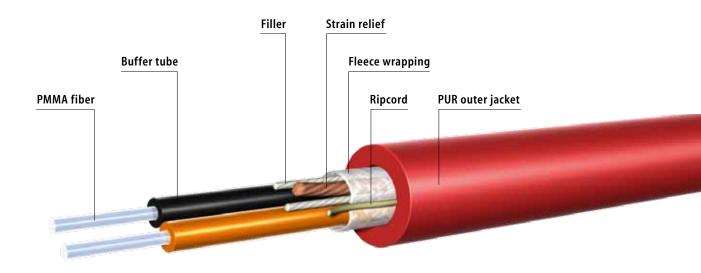
I-(ZN)V2Y11Y 2P980/1000+2x1.0qmm

Order no.	84D00600S333
Code no.	29
Application	in harsh industrial environments,
	suitable for drag chains
Assembly	Direct connector assembly
Length	500 m

AT-(ZN)V2Y2Y 2P980/1000

Order no.	84D02500S000
Code no.	37
Application	Splittable cable for fixed outdoor
	installation
Assembly	Direct connector assembly
Length	500 m
Variants	Dummy elements can be replaced
	by copper or POF elements

I-(ZN)V4Y11Y 2P980/1000+2x1.0qmm

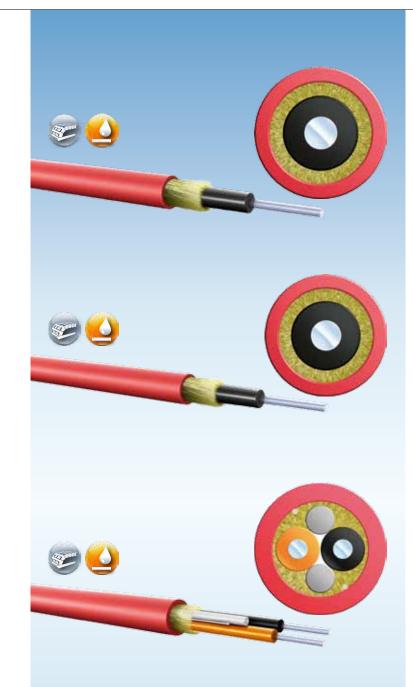

Order no.	84D02800S333	
Code no.	38	
Application	in harsh industrial environments,	
	suitable for drag chains	
Assembly	Direct connector assembly	
Length	500 m	

I-V4Y11Y PP980/1000 Order no. 84E002005333 Code no. 39

Code no.	39	
Application	in harsh industrial environments,	
	suitable for drag chains	
Assembly	Direct connector assembly	
Length	500 m	

POF Cables

POF cable specifications		I-V4Y(ZN)11Y 2P980/1000 FLEX	l-(ZN)V2Y11Y 2P980/1000 +2x1.0qmm	AT-(ZN)V2Y2Y 2P980/1000	l-(ZN)V4Y11Y 2P980/1000 + 2x1.0qmm	I-V4Y11Y 4P980/1000	
Order no.			84D00300S383	84D00600S333	84D02500S000	84D02800S333	84E00200S333
	Buffer tube material		PA	PE	PE	PA	PA
Composition	Outer jacket material		PUR	PUR	PE	PUR	PUR
	No. of POF elements (980/1000 µm)		2	2	2	2	4
	No. of copper elements		_	2	_	2	-
	Outer Ø [mm]		8.0	7.5	7.0	7.5	7.5
	min. bending radius [mm]	during installation	60	90	90	70	70
Mechanical		long-term	40	60	60	50	50
properties	max. pull force [N]	short-term	400	200	200	400	500
properties		long-term	100	100	100	100	200
	Approx. cable weight [kg/km]		55	62	33	42	42
Thermal properties	Operating temperature [°C]		-20 to +70	-20 to +70	-25 to +70	-20 to +70	-20 to +70
Attenuation	[dB/km] at 650 nm (laser)		<190	<220	<220	<190	<190
	[dB/km] at 660 nm (LED)		<290	<350	<350	<290	<290


I-(ZN)V4Y11Y 2P980/1000+4x1.5qmm

Order no.	84D01400S444		
Code no.	41		
	in harsh industrial environments,		
Application	suitable for drag chains		
Assembly	Direct connector assembly		
Length	500 m		

I-(ZN)V4YY 2P980/1000+3x1.5qmm

Order no.	84D01800S707	
Code no.	42	
Annliestion	Flexible applications	
Application	with low dynamic stress	
Assembly	Direct connector assembly	
Length	500 m	

POF cable specifications			l-(ZN)V4Y11Y 2P980/1000 +4x1.5qmm	l-(ZN)V4YY 2P980/1000 +3x1.5qmm
Order no.			84D01400S444	84D01800S707
	Buffer tube material		PA	PA
	Outer jacket material		PUR	PVC
Composition	No. of POF elements (9	980/1000 µm)	2	2
	No. of copper elements		4	3
	Outer Ø [mm]		10.6	10.7
Mechanical properties	min handing radius [m	during installation	110	110
	min. bending radius [m	long-term	70	70
	max. pull force [N]	short-term	400	200
		long-term	100	100
	Approx. cable weight [kg/km]		146	132
Thermal properties	Operating temperature [°C]		-20 to +70	-20 to +70
Attenuation	[dB/km] at 650 nm (laser)		<230	<230
	[dB/km] at 660 nm (LED)		<330	<330
Flame test	Tested acc. to UL VW-1		_	_

I-V4Y(ZN)11Y 1P980/1000 6.0 mm UL AWM Style 5422 Order no. 84C012005333 Code no. 3A in harsh industrial environments,

Application		
	suitable for drag chains	
Assembly	Direct connector assembly	
Length	500 m	

I-V2Y(ZN)11Y 1P980/1000 5.5 mmUL AWM Style 5422Order no.84C01300S333Code no.2AApplicationFlexible applications
with low dynamic stressAssemblyDirect connector assemblyLength500 m

I-V4Y(ZN)11Y 2P980/1000 FLEX UL AWM Style 5422

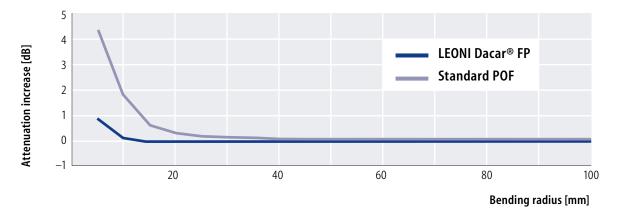
Order no.	84D03500S333	
Code no.	1A	
A	in harsh industrial environments,	
Application	suitable for drag chains	
Assembly	Direct connector assembly	
Length	500 m	

Info

Hybrid cables, consisting of different optical fibers and electrical waveguides, are produced on a customer-specific basis.

Cables with UL (Underwriter Laboratories) approval

Cables with UL approval guarantee safety and reliability in the intended application areas. They are specifically tailored to the requirements of the North American market, however demand for them is increasing in Asia and Europe, where they are being used more and more. Insurance companies, public authorities, planners and other regulatory authorities above all place their confidence in UL-approved optical cables with singlemode/multimode or plastic fibers. Optical cables are described in the standard UL 1651-Fiber Optic Cable and categorised according to OFNP (plenum), OFNR (riser) and OFN (general purpose). Optical cables can also be classified according to the UL 758-Appliance Wiring Material (AWM) standard. UL cables have to meet very high requirements for fire performance in particular, including generation of smoke gas.

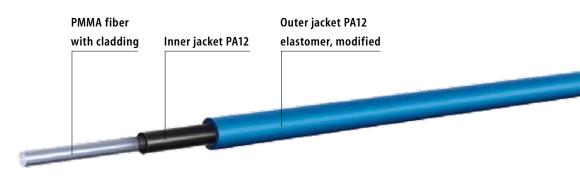

POF cable specifications		I-V4Y(ZN)11Y 1P980/1000 6.0 mm UL AWM Style 5422	I-V2Y(ZN)11Y 1P980/1000 5.5 mm UL AWM Style 5422	I-V4Y(ZN)11Y 2P980/1000 FLEX UL AWM Style 5422	
Order no.			84C01200S333	84C01300S333	84D03500S333
	Buffer tube material		PA	PE	PA
	Outer jacket material		PUR	PUR	PUR
Composition	No. of POF elements (980)/1000 μm)	1	1	2
	No. of copper elements		_	_	-
	Outer Ø [mm]		6.0	5.5	8.0
	min. bending radius [mm]	during installation	50	70	60
Mechanical		long-term	30	50	40
properties	max. pull force [N]	short-term	500	400	400
properties		long-term	200	100	100
	Approx. cable weight [kg/km]		32	23	23
Thermal properties	Operating temperature	[°C]	-20 to +70	-20 to +70	-20 to +70
Attenuation	[dB/km] at 650 nm (laser)		<160	<190	<180
	[dB/km] at 660 nm (LED)		<230	<290	<275
Flame test	Tested acc. to UL VW-1		For harsh industrial environments	Suitable for flexible applications in areas with low dynamic stress	For harsh industrial environments

POF

Graph:

Attenuation increase as a function of bending radius (standard POF compared to LEONI Dacar® FP)

LEONI Dacar® FP


- Optical fibers for use in vehicles

Electronic systems are increasingly being used instead of mechanical components in automotive development to realise more and more comfort and safety functions. This means ever increasing complexity of the vehicle electronics with a fast-growing number of functions, sensors and actuators.

To meet these high technical requirements, LEONI has developed a special assembly technique and an innovative cable for data communication and even slightly modified the fiber for this application. The buffer tube always consists of two polyamide layers: a black inner jacket to rule out possible interference from outside light and a coloured outer jacket (blue, green, yellow or orange).

The fiber consists of a PMMA core and optimised double cladding.

This construction significantly reduces the attenuation that occurs when the optical fiber is bent compared with standard polymer optical fiber.

100

POF

LEONI Dacar® FP			
Order no.	See table		
	For data communication		
	within the vehicle, for heavy		
Application	mechanical stress and highly		
	flexible applications		
	with small bending radii		
Assembly	mbly Direct connector assembly		
Length	5000 m		

Order table for LEONI Dacar® FP				
Colour	Code no.	Order no.		
orange	17	84A00500S262		
green	C7	84A00500S666		
blue	C8	84A00500S519		
yellow	С9	84A00500S201		

MOST-Insert Pin POF		
Order no.	SMIP-SM0-25-0010	
Colour	Metallic	
Fiber Ø	iber ø 1000 μm	
Cable Ø	2.3 mm	
Assembly	ssembly Crimping/cutting	
Ferrule Metal		
Incl. dust cap		

MOST-Insert Socket POF

Order no.	SMIS-SM0-25-0010	
Colour	Metallic	
Fiber Ø	1000 µm	
Cable Ø	2.3 mm	
Assembly	Crimping/cutting	
Ferrule	Metal	
Incl. dust cap		

LEONI Dacar® FP – Automotive Cables

POF

Info

POFs have been used for years for data communication between audio devices and for the airbag management system in the vehicle. Easy and cost-effective assembly of the POF, insusceptibility to interference from electromagnetic radiation, low weight and high bandwidths speak in favour of using these fibers instead of copper cables.

LEONI Dacar® FP assembly available			
in following designs			
Order no.	See table		
	Pin – pin,		
Design	pin – socket,		
Design	with MOST-Inserts in metal		
	or plastic at both ends.		
xxx in the order number must be			
replaced by the required length			

(in mm or cm) in three digits.

Order table

	1		I	
Colour	Pin – pin		Pin –	socket
	Plastic	Metal	Plastic	Metal
orange	KMIP-MIP-17xxxcm-K	KMIP-MIP-17xxxcm-M	KMIP-MIS-17xxxcm-K	KMIP-MIS-17xxxcm-M
green	KMIP-MIP-C7xxxcm-K	KMIP-MIP-C7xxxcm-M	KMIP-MIS-C7xxxcm-K	KMIP-MIS-C7xxxcm-M
blue	KMIP-MIP-C8xxxcm-K	KMIP-MIP-C8xxxcm-M	KMIP-MIS-C8xxxcm-K	KMIP-MIS-C8xxxcm-M
yellow	KMIP-MIP-C9xxxcm-K	KMIP-MIP-C9xxxcm-M	KMIP-MIS-C9xxxcm-K	KMIP-MIS-C9xxxcm-M

LEONI Dacar® FP

Length

Golden F	iber
Order no.	KMIP-MIP17001M pin – pin
order no.	KMIP-MIS17001M pin – socket
	For matching the setup for attenuation measurements in MOST cables.
	Fiber end faces are inspected using the microscope and the pictures archived.
Application	Each fiber end face can be assigned via the ident. number/label. The label
	is attached directly to the Golden Fiber (side A) and contains the following
	information: ident. number / date of manufacture / attenuation / measured length.
	The assembled buffered fibers are individually packaged in sealable
	PE pouches, the connectors are fitted with dust caps.
Packaging	A certificate is enclosed with each Golden Fiber.
Accessories	Appropriate interchangeable adapters for the optical power meter (page 236)

Order table

Designation	Order no.
Active interchangeable adapter for MOST-Insert pin, 650 nm	ZMIS-Ts0-650
Interchangeable adapter for MOST-Insert connector	ZMIP-TX0

POF connectors

	F05 connector POF			F07 connector POF
Order no.	SF05-SS0-20-0010	SF05-SG0-02-0010	SF05-SV0-02-0010	SF07-DG0-08-0010
Compatibility	TOCP155/TOCP155P/ TOCP172	TOCP155/TOCP155P/ TOCP173	TOCP155/TOCP155P/ TOCP174	TOCP200/TOCP200P/ TOCP255/TOCP255P
Fiber Ø	1000 µm	1000 µm	1000 µm	1000 µm
Cable Ø	2.2 mm	2.2 mm	2.2 mm	2.2 mm
Assembly	Crimping/polishing	Clamping/hot plate	Clamping/polishing	Clamping/hot plate
Ferrule	Metal	Plastic	Plastic	Plastic
Reference cable	KF05-F0511050cm	KF05-F0511050cm	KF05-F0511050cm	KF07-F0713050cm
	for attenuation measurement of 0.5 m	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m
Features	Incl. crimping sleeve,	Incl. dust cap	Incl. dust cap	Incl. dust cap
reatures	black boot, dust cap			
Stripping	A2 / A6	A2 / A6	A2 / A6	A2 / A6
Crimping	С3	-	-	-
Polishing	P2 / P3 / P7	P10	P2 / P3 / P7	P10

	FSMA connector POF			
Order no.	SSMA-SH0-02-0010	SSMA-SH0-02-0020	SSMA-SS0-02-0020	SSMA-SS0-02-0030
Fiber Ø	1000 µm	1000 µm	1000 µm	1000 µm
Cable Ø	2.2 mm	6.0 mm	6.0 mm	3.6 mm
Assembly	Crimping/hot plate	Crimping/hot plate	Crimping/polishing	Crimping/polishing
Ferrule	Metal	Metal	Metal	Metal
Reference cable	KSMA-SMA11050cm	KSMA-SMA11050cm	KSMA-SMA11050cm	KSMA-SMA11050cm
Reference cable	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m
Features	Incl. black boot and dust cap	Incl. crimping sleeve, black boot and dust cap	Incl. crimping sleeve, black boot and dust cap, also as knurled variant	Incl. crimping sleeve, red boot and dust cap, also as knurled variant
Stripping	A2 / A6	A2 / A6	A2 / A6	A2 / A6
Crimping	C1	C1	C1	-
Polishing	P10	P10	P2 / P3 / P6	P10

102

	FSMA connector POF			
Order no.	SSMA-SS0-02-0050	SSMA-SS0-02-0060	SSMA-SS0-02-0070	SSMA-SV0-02-0010
Fiber Ø	1000 µm	1000 µm	1000 µm	1000 µm
Cable Ø	2.2 mm	2.2 mm	6.0 mm	2.2 mm
Assembly	Crimping/polishing	Crimping/polishing	Crimping/polishing	Clamping/polishing
Ferrule	Metal	Plastic	Plastic	Metal
Reference cable	KSMA-SMA11050cm	KSMA-SMA11050cm	KSMA-SMA11050cm	KSMA-SMA11050cm
	for attenuation measurement 0.5 m			
F	Incl. black boot and dust cap,	Incl. black boot	Incl. crimping sleeve,	Incl. black boot
Features	also as hexagonal variant	and dust cap	black boot and dust cap	and dust cap
Stripping	A2 / A6	A2 / A6	A2 / A6	A2 / A6
Crimping	C1	C1	C1	_
Polishing	P2 / P3 / P6			

	HP connector POF		
Order no.	SXHP-SS0-20-0020	SXHP-SS0-19-0010	SXHP-SSO-19-0020
Compatibility	_	HFBR4511	HFBR4501
Fiber Ø	1000 µm	1000 µm	1000 µm
Cable Ø	2.2 mm	2.2 mm	2.2 mm
Assembly	Crimping/polishing	Crimping/polishing	Crimping/polishing
Ferrule	Metal	Plastic	Metal
Reference cable	KHPS-HPS11050cm	KHPS-HPS11050cm	KHPS-HPS11050cm
	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m
Features	Incl. green boot and dust cap	Incl. crimping sleeve and dust cap	Incl. crimping sleeve and dust cap
Stripping	A2 / A6	A2 / A6	A2 / A6
Crimping	C3	C3	C3
Polishing	P1 / P2 / P3 / P8	P1 / P2 / P3 / P8	P1 / P2 / P3 / P8

	HP connector POF		
Order no.	SXHP-SS0-19-0030	SXHP-SS0-19-0040	SXHP-DS0-19-0020
Compatibility	HFBR4513	HFBR4503	HFBR4516
Fiber Ø	1000 µm	1000 μm	1000 μm
Cable Ø	2.2 mm	2.2 mm	2.2 mm
Assembly	Crimping/polishing	Crimping/polishing	Crimping/polishing
Ferrule	Plastic	Plastic	Plastic
Reference cable	KHPS-HPS11050cm	KHPS-HPS11050cm	KHPD-HPD13050cm
Reference Cable	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m
Features	Incl. crimping sleeve	Incl. crimping sleeve	Incl. crimping sleeve and dust cap
Stripping	A2 / A6	A2 / A6	A2 / A6
Crimping	C3	C3	С3
Polishing	P1 / P2 / P3	P1 / P2 / P3	P1 / P2 / P3

	HP connector POF
Order no.	SXHP-SV0-19-0010
Compatibility	HFBR 4531
Fiber Ø	1000 μm
Cable Ø	2.2 mm
Assembly	Clamping/polishing
Ferrule	Plastic
Reference cable	KHPS-HPS11050cm
Reference cable	for attenuation measurement 0.5 m
Features	Incl. dust cap
Stripping	A2 / A6
Crimping	C3
Polishing	P1 / P2 / P3 / P8

HP connector POF rugged
SXHP-SV0-02-0010
1000 μm
2.2 mm
Clamping/polishing
Plastic
KHPS-HPS11050cm
for attenuation measurement 0.5 m
Without dust cap
A2 / A6
C3
P1 / P2 / P3 / P8

|--|

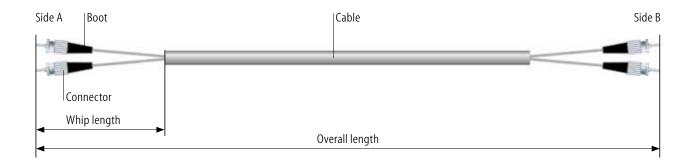
	HP connector duplex POF
Order no.	SXHP-DS0-19-0010
Compatibility	HFBR 4506
Fiber Ø	1000 μm
Cable Ø	2.2 mm
Assembly	Crimping/polishing
Ferrule	Plastic
Reference cable	KHPD-HPD13050cm
	for attenuation measurement 0.5 m
Features	Incl. crimping sleeve and dust cap
Stripping	A2 / A6
Crimping	С3
Polishing	P1 / P2 / P3

Anti-kink prote	cting sleeve
for HP connecto	ors
SKNS-CZ0-20-0010	in blue
SKNS-GZ0-20-0010	in grey
HFBR 4501, 4503, 4	511 and 4513

	ST connector (BFOC) POF		SC connector POF
Order no.	SXST-SS0-22-0010	SXST-SV0-02-0010	SXSC-SS0-02-0010
Fiber Ø	1000 µm	1000 µm	1000 µm
Cable Ø	2.2 mm	2.2 mm	2.2 mm
Assembly	Crimping/polishing	Clamping/polishing	Crimping/polishing
Ferrule	Metal	Metal	Metal
Reference cable	KXST-XST11050cm	KXST-XST11050cm	KXSC-XSC11050cm
Nelelelice Cable	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m
Features	Incl. crimping sleeve,	Incl. black boot	Incl. crimping sleeve,
reatures	black boot and dust cap	and dust cap	black boot and dust cap
Stripping	A2 / A6	A2 / A6	A2 / A6
Crimping	C1	_	<u>C3</u>
Polishing	P2 / P3 / P9	P2 / P3 / P9	P2 / P3

	MIP connector POF	MIS connector POF	SCRJ connector duplex IP20
Order no.	SMIP-SM0-25-0010	SMIS-SM0-25-0010	SSCR-DV0-02-0010
Fiber Ø	1000 µm	1000 μm	1000 μm
Cable Ø	2.3 mm	2.3 mm	2.2 mm
Assembly	Crimping/cutting	Crimping/cutting	Clamping/polishing
Ferrule	Metal	Metal	Metal
Reference cable	KMIP-MIP17050cm	KMIS-MIS17050cm	KSCR-SCR13050cm
Neterence Cable	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m
Features	Incl. dust cap	Incl. dust cap	Incl. black boot and dust cap
Stripping	A2 / A6	A2 / A6	A2 / A6
Crimping	On request	On request	-
Polishing	On request	On request	P2 / P3 / P6

POF couplings


	Coupling for HP POF	Coupling for HP POF	
Order no.	SKUP-2XHPS-0020	SKUP-2XHPS-0030	
Compatibility	HFBR 4515	HFBR 4505	
Fiber Ø	1000 µm	1000 μm	
Ferrule	Plastic without separate metal insert	Plastic without separate metal insert	

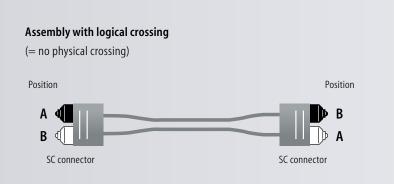
Coupling for SCRJ POF
SKUP-2XSCR-0010

-
1000 µm
Plastic with ceramic insert

Description of the structure of pre-assembled POF outdoor cables

- Standard whip lengths 20 ±4 cm
- Overall length tolerances (±2%)

The production of fibers and cables in LEONI's own facilities and their careful assembly under laboratory conditions ensure superior properties and maximum reliability.


In addition to standard products, we offer a range of special product functionalities as well as customer-specific assembly, engineering and consulting.

Service features

- All fiber and cable types (including hybrid cables)
- All connector types
- Every attenuation grade for different customer requirements
- Every length, even for small order sizes
- Delivery possible within 24 hours
- Customer-specific assembly
- Customer-specific cable printing
- Additional selective printing of the cable jacket during the process of cutting to length

Quality assurance

The optical attenuation is defined according to IEC60793-1-40 B for POF. The result is shown on the label.

Note on polarity

Please note that our products for standard and special assembly are produced acc. to ANSI/TIA/EIA-568-B.1 with logical crossing.

The products can also be assembled with physical crossing on request (please specify when ordering).

FiberSwitc

POF position switch

Position swit	ch IP67
Order no.	H01x0015500AS0X900
Design	1S/10E snap-action contacts, swivel drive adjustable
	on right/left, stainless steel lever, 27 mm in length,
	with 19 mm plastic roller
Fiber type	POF 980/1000 μm
Insertion loss	POF switching mechanism 4 to 6 dB (650 nm)
	POF cable (84D052SIS) AT-V4YQ(ZN)B2Y 2P980/1000
	650 nm (laser) max. 190 dB/km
	660 nm (LED) typ. 290 dB/km
Housing	Metal
Protection class	IP66/67 in enclosed system with appropriate cable
	gland in the housing
Operating	
temperature	-40°C to +85°C (depending on cable type)
Scope of delivery	POF switching insert with 1x N/O contact and 1x N/C contact

Order number scheme for POF cable assembly

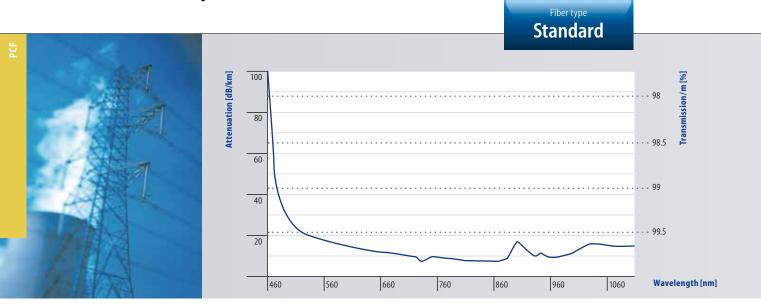
Cable assembly	К
Connector type Side A	
BFOC (ST®)	XST
FSMA	SMA
HP simplex	HPS
HP duplex	HPD
F05, TOSLINK-compatible	F05
F07, TOSLINK-compatible	F07
SC	XSC
SCRJ	SCR
MIP (Most Insert Pin)	MIP
MIS (Most Insert Socket)	MIS
SMI	SMI
Connector type Side B (see above)	E.g. XST
POF cable code no.	
E.g. I-V2Y(ZN)HH	32
AT-(ZN)V2Y2Y 2P980	37
Length	
128, 010, etc.	E.g. 325
Unit	
mm, cm, m, etc.	E.g. cm
Variants	
Customer-specific	
castomer specific	

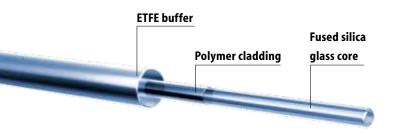
Order example:

K XST-XST 32 325 cm

3.25 m, duplex connection cable (cable type: I-V2Y(ZN) HH2X1P980/1000, PMMA fiber with PE buffer tube and FRNC outer jacket) assembled with ST connectors 109

Polymer cladded fibers

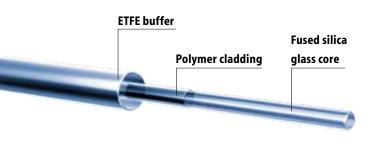

Polymer cladded fibers (PCF) have been on the market for many years, standing out by being very robust and easy to assemble.


PCF consists of a glass core with polymer cladding. What is especially important here is good adhesion of the cladding material to the glass core, which does not go without saying because of the different expansion coefficients especially at high temperatures. That is where many products on the market differ most. It is also why there are a vast number of different abbreviations for PCF such as PCS, HCS and HPCF. LEONI uses a fiber with NA = 037, which shows especially low attenuation at 650 and 850 nm, as its standard PCF. The low attenuation makes it possible to bridge distances of up to 500 m in systems designed for POF with 650 nm and distances of up to 4 km in systems with 850 nm.

PCF fiber specifications	112
Gradient index PCF	113
PCF cables	114
GI PCF 62,5/200/230	114
I-V(ZN)Y 1K200/230	116
A-V(ZN)11Y 1K200/230	116
I-V(ZN)Y 2X 1K200/230	116
I-V(ZN)H 2X 1K200/230	116
I-V(ZN)YY 1K200/230	118
I-V(ZN)HH 2X 1K200/230	118
I-V(ZN)H2Y 2K200/230	118
AT-VQ(ZN)HB2Y 2K200/230	118
I-V(ZN)Y11Y 2K200/230 2x1qmm	118
AT-V(ZN)Y11Y 2K200/230	120
A-DQ(ZN)B2Y 4K200/230	120
A-DQ(ZN)B2Y 4K200/230	120
A-DQ(ZN)BH 12K200/230	120
PCF connectors	122
F05 connector PCF	122
F07 connector PCF	122
FCPC connector PCF	122
HP connector PCF	122

HP connector housing PCF	12
SC connector PCF	12
LC connector PCF	124
LC duplex clamp PCF	124
SCRJ connector duplex IP20	124
SCRJ connector duplex IP67	124
FSMA connector PCF	125
ST connector (BFOC) PCF	125
PCF couplings	127
Coupling for LC duplex PCF	127
Coupling for SC duplex PCF	12
Coupling for HP PCF	12
Coupling for SCRJ PCF	127
Coupling for FCPC PCF	127
Coupling for FSMA PCF	127
Coupling for ST PCF	127
Pre-assembled PCF cables	128
Order number scheme for PCF cable assembly	129
Easy Pull cabling system	130
Easy Pull E1	130
Easy Pull E2	130
Divider for Easy Pull E1	13
Divider for Easy Pull E2	13'

PCF fiber specifications


The combination of the PCF consisting of a fused silica glass core and a polymer cladding offers the optimum blend of advantages of POF and glass fibers.

A Tefzel[®] layer is additionally applied as a buffer to improve the mechanical and thermal properties. The same transmitter and receiver components are used for PCF as for POF (650 nm).

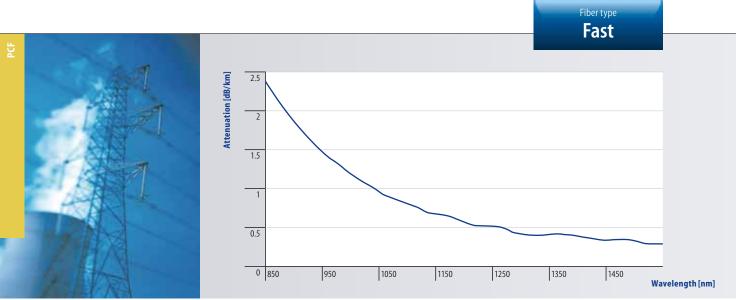
		Polymer cladded fiber (PCF) K200/230						
Order no.	84850001T	84850002T	84850003T	84850004T	84850005T	84850006T	84850007T	84850008T
Transmission properties								
Core [µm] (±2%)	125	200	300	400	600	800	1000	1500
Cladding [µm] (±2%)	140	230	330	430	630	830	1035	1535
Attenuation at 850 nm	12	6	8	8	8	8	8	15
Bandwidth [MHz×km] at 850 nm	20	20	15	13	9	7	5	N/A
NA	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37
Mechanical properties								
Short-term bending radius [mm]	9	10	15	29	58	73	73	182
Long-term bending radius [nm]	15	16	24	47	94	94	118	295

Gradient index PCF

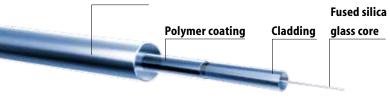
Standard PCF with 200 µm core diameter and 230 µm cladding is mainly used in industrial automation as well as in the cabling for wind-power and solar-power systems. It offers high mechanical resistance as well as cost-effective and direct connector assembly.

Transmission rates are constantly increasing in industrial settings (up to 10 Gigabit Ethernet), which means that the bandwidth of the standard PCF is no longer sufficient at 15 MHz x km.

The bandwidth of optical fibers with step-index profile such as standard PCF is drastically restricted by the modal dispersion. The use of gradient-index fibers is the best solution to this problem.


Please inform us of your special requirements.

Transmission properties	
Core [µm] (±2%)	200
Cladding [µm] (±2%)	230
Buffer [µm] (±5%)	500
Attenuation at 850 nm [dB/km]	<12
Bandwidth [MHz×km] at 850 nm	>20
NA	0.4


GK 200/230	

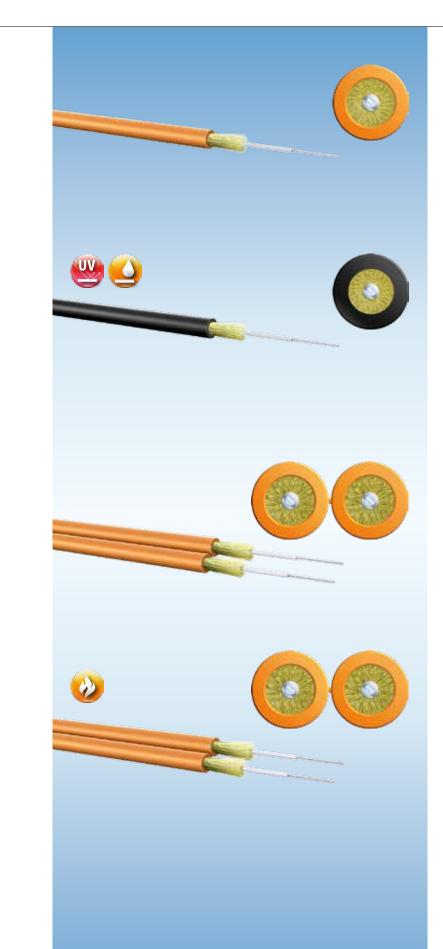
114

FiberConnect[®] Even faster, higher data rate

ETFE buffer

The cleavable multimode fiber with polymer cladding, ETFE buffer and gradient-index core is the ideal solution for communication applications that require high bandwidths in harsh industrial environments. The adapted PCF fiber design has a positive influence on the fiber properties in terms of service life, mechanical resilience as well as higher moisture and temperature resistance in comparison with standard multimode glass fibers with 62.5 µm core.

The use of a polymer coating also enables connectors to be crimped or clamped directly to the fibers for quick and efficient assembly in the field.


GK 62.5/200/230

Order no.	84850043F
Transmission properties	
Core [µm] (±2%)	62.5
Cladding [µm] (±2%)	200
Coating [µm] (±2%)	230
Buffer (µm) (+-5%)	500
Attenuation at 850 nm	3.2
Attenuation at 1300 nm	0.9
Bandwidth [MHz×km] at 850 nm	200
Bandwidth [MHz×km] at 1300 nm	500
NA	0.275
Mechanical properties	
Short-term bending radius [mm]	10
Long-term bending radius [nm]	30

- High bandwidth
 - Faster, more efficient assembly technology in comparison with SM or MM glass fibers
 - Compatibility with PCF cleaving technique and thus reduced overall costs during installation
 - High resilience: flexible, resistant to aging, low susceptibility to temperature and humidity
 - Compatible transmitter elements: LEDs, laser diodes, VCSELs, RCLEDs

Fiber Connect ®			
			115

PCF cables

I-V(ZN)Y 1K200/230

Order no.	84P00300T222
Code no.	72
Application	Flexible applications
	with low dynamic stress
Assembly	Direct connector assembly
Length	2000 m

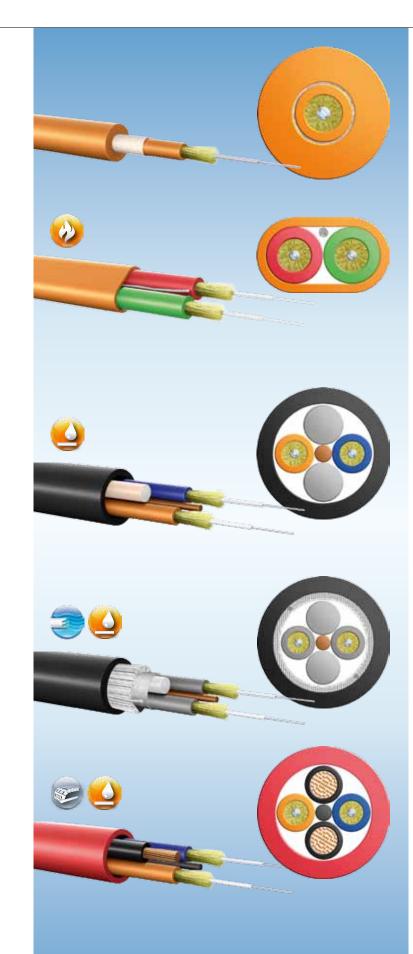
A-V(ZN)11Y 1K200/230

Order no.	84P00600T000
Code no.	74
	in harsh industrial environments,
Application	for flexible installation indoors
	and outdoors
Assembly	Direct connector assembly
Length	2000 m

I-V(ZN)Y 2X 1K200/230				
Order no.	84Q00300T222			
Code no.	61			
A 12 .2	Flexible applications			
Application	with low dynamic stress			
Assembly	Direct connector assembly			
Length	2100 m			

I-V(ZN)H 2X 1K200/230			
Order no.	84Q01000T222		
Code no.	66		
A 11	Flexible applications		
Application	with low dynamic stress		
Assembly	Direct connector assembly		
Length	2100 m		

| 117


Info

PCF cables are available for both indoor and outdoor applications. We offer many different designs to meet the large variety of applications in the industrial environment.

Special requirements in terms of flexibility, resistance to oil, resistance to UV light, freedom from halogen or flame retardancy are satisfied by selecting suitable materials.

PCF cable specifications		I-V(ZN)Y 1K200/230	A-V(ZN)11Y 1K200/230	I-V(ZN)Y 2X 1K200/230	I-V(ZN)H 2X 1K200/230	
Order no.			84P00300T222	84P00600T000	84Q00300T222	84Q01000T222
	Inner jacket material		_	_	_	_
	Outer jacket material		PVC	PUR	PVC	FRNC
Composition	No. of PCF elements (200/230)		1	1	2	2
	Buffered fiber Ø [mm]		_	_	_	_
	Outer Ø [mm]		2.2	3.0	2.2 x 4.5	2.2 x 4.5
	min. bending radius [mm]	during installation	60	60	60*	60*
Mechanical	mini. Denuning radius (mini)	long-term	30	30	30	30
properties	max. pull force [N]	short-term	300	800	300	300
properties		long-term	100	400	100	100
	Approx. cable weight [kg/km]		5	6.5	10	11
Thermal properties	Operating temperature [°C]		-20 to +70	-20 to +70	-20 to +70	-20 to +70
Attenuation	[dB/km] at 650 nm (laser)		<10	<10	<10	<10
Attenuation	[dB/km] at 850 nm (LED)		<8	<8	<8	<8

* over flat side

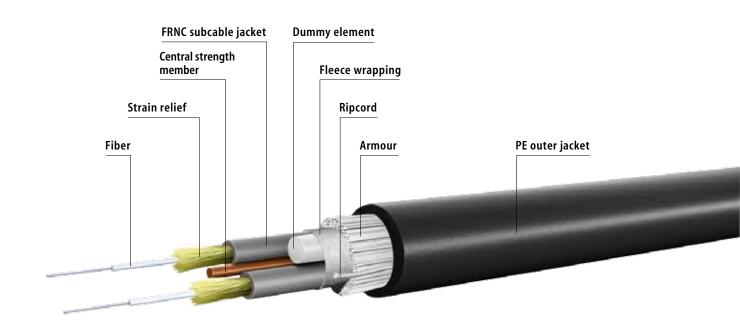
I-V(ZN)YY 1K200/230

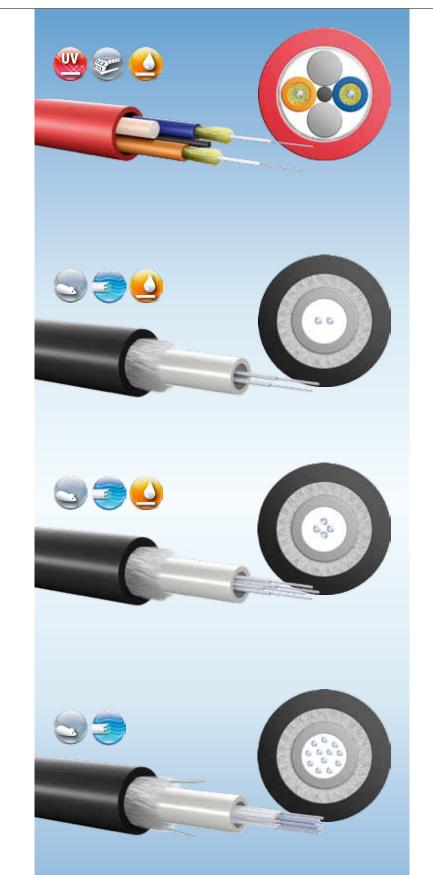
Order no.	84P00900T333
Code no.	71
	Flexible applications
Application	with low dynamic stress
Assembly	Direct connector assembly
Length	2000 m

I-V(ZN)HH 2X 1K200/230

Order no.	84Q00700T222
Code no.	64
Annliention	Flexible applications
Application	with low dynamic stress
Assembly	Direct connector assembly
Length	2000 m

I-V(ZN)H2Y 2K200/230Order no.84Q00400T000Code no.63ApplicationSplittable cable for fixed indoor
and outdoor installationAssemblyDirect connector assemblyLength2000 m

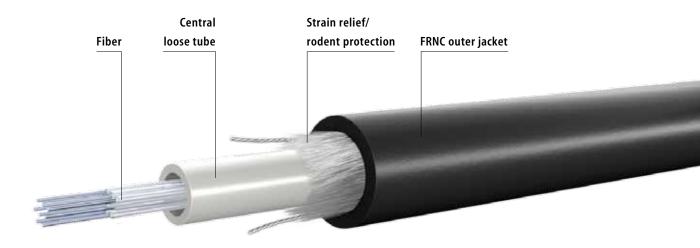

AT-VQ(ZN)HB2Y 2K200/230			
Order no.	84Q00200T000		
Code no.	75		
Application	Splittable cable for fixed installa-		
Application	tion, longitudinally waterproof		
Assembly	Direct connector assembly		
Length	2000 m		


I-V(ZN)Y11Y 2K200/230+2x1qmm

Order no.	84Q03000T333
Code no.	62
	Splittable indoor cable for harsh
Application	industrial environments, for fixed
	installation, suitable for drag chains
Assembly	Direct connector assembly
Length	2000 m

PCF cable	specifications		I-V(ZN)YY 1K200/230	I-V(ZN)HH 2X 1K200/230	I-V(ZN)H2Y 2K200/230	AT-VQ(ZN)HB2Y 2K200/230	I-V(ZN)Y11Y 2K200/230 2x1qmm
Order no.			84P00900T333	84Q00700T222	84Q00400T000	84Q00200T000	84Q03000T333
	Inner jacket material		PVC	FRNC	FRNC	FRNC	PVC
Composition	Outer jacket material		PVC	FRNC	PE	PE	PUR
	No. of PCF elements (200/230)		1	2	2	2	2
	No. of copper elements		_	_	_	-	2
	Buffered fiber Ø [mm]		2.2	2.9	2.2	2.9**	2.2
	Outer Ø [mm]		5.0	3.9 x 6.8	7.0	10.5	7.6
Mechanical	min. bending radius [mm]	during installation	60	50*	70	150	70
		long-term	40	30	50	200	50
	max. pull force [N]	short-term	300	800	800	1500	800
properties		long-term	100	200	200	500	200
	Approx. cable weight [kg/km]		28	31	38	90	65
Thermal properties	Operating temperature ['	°C]	-20 to +70	-20 to +70	-20 to +70	-20 to +70	-20 to +70
•	[dB/km] at 650 nm (laser))	<10	<10	<10	<10	<10
Attenuation	[dB/km] at 850 nm (LED)		<8	<8	<8	<8	<8
				* over flat side	** also spas	ial cize with (12.2 mm	

 * over flat side ** also special size with Ø 2.2 mm


AT-V(ZN)Y11Y 2K200/230			
Order no.	84Q04700T333		
Code no.	D6		
	Abrasion-resistant PU jacket,		
Application	suitable for drag chains,		
Application	for fixed indoor		
	and outdoor installation		
Assembly	Direct connector assembly		
Length	2000 m		

A-DQ(ZN)	B2Y 2K200/230
Order no.	84S00400T000
Code no.	76
	Longitudinally waterproof
	cable with non-metallic rodent
Application	protection, for fixed installation
	outdoors, for running directly
	in the ground
Length	2000 m

A-DQ(ZN)	B2Y 4K200/230
Order no.	84S00800T000
Code no.	D7
	Longitudinally waterproof cable
Annlisation	with non-metallic rodent protec-
Application	tion, for fixed installation outdoors,
	for running directly in the ground
Assembly	Direct connector assembly
Length	2000 m

A-DQ(ZN)BH 12K200/230				
84S00200T000				
79				
Longitudinally waterproof				
cable with non-metallic rodent				
protection, for fixed installation				
indoors and outdoors				
2000 m				

PCF cable	specifications		AT-V(ZN)Y11Y 2K200/230	A-DQ(ZN)B2Y 2K200/230	A-DQ(ZN)B2Y 4K200/230	A-DQ(ZN)BH 12K200/230
Order no.			84Q04700T333	84S00400T000	84S00800T000	84500200T000
	Inner jacket material		PVC	_	_	_
	Outer jacket material		PUR	PE	PE	FRNC
Composition	No. of PCF elements (200/230)		2	2	4	12
	Buffered fiber Ø [mm]		2.2	3.5	4.5	4.5
	Outer Ø [mm]		7.4	7.5	8.5	8.5
	min. bending radius [mm]	during installation	110	150	170	170
Aechanical		long-term	70	110	130	130
	max. pull force [N]	short-term	800	1500	1500	1500
oroperties		long-term	200	1200	1200	1200
	Approx. cable weight [kg/km]		45	47	76	82
Thermal properties	Operating temperature	[°C]	-40 to +85	-20 to +70	-20 to +70	-20 to +70
	[dB/km] at 650 nm (laser)		<10	<10	<10	<10
Attenuation	[dB/km] at 850 nm (LED)		<8	<8	<8	<8

PCF connectors

122

	FO5 connector PCF
Order no.	SF05-SC0-08-0010
Compatibility	TOCP101Q, TOCP151Q, CF-1571
Fiber Ø	230 µm
Cable Ø	2.2 mm
Assembly	Crimping/cleaving
Ferrule	Metal
Reference cable	KF05-F05 72050cm
	for attenuation measurement 0.5 m
Features	Incl. crimping sleeve,
	black boot and dust cap
Assembly	K4

F07 connector PCF	
SF07-DC0-08-0010	
TOCP201Q, CF-2071	
230 µm	
2.2 mm	
Crimping/cleaving	
Metal	
KF07-F07 61050cm	
for attenuation measurement 0.5 m	
Incl. crimping sleeve,	
black boot and dust cap	
K4	

FCPC connector PCF
SFCP-SK0-04-0030
-
230 µm
2.2 mm
Crimping/gluing/polishing
Ceramic
KFCP-FCP 72050cm
for attenuation measurement 0.5 m
Incl. crimping sleeve,
black boot and dust cap
On request

	HP connector PCF	HP connector PCF
Order no.	SXHP-SC0-32-0010	SXHP-SC0-32-0020
Compatibility	HFBR 4521, V-PIN 2005	HFBR 4521, V-PIN 2005
Fiber Ø	230 µm	230 µm
Cable Ø	2.2 mm	2.2 mm
Assembly	Crimping/cleaving	Crimping/cleaving
Ferrule	Plastic	Plastic
Reference cable	KHPS-HPS 72050cm	KHPS-HPS 72050cm
Reference cable	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m
Features	Incl. crimping sleeve and dust cap	Incl. crimping sleeve and dust cap
Assembly	K5	On request

HP connector housing PCF
SGEH-DC0-10-0010
BP 04703
_
2.2 mm
Special note:
The HP connectors (see left)
with the order no. SXHP-SC0-32-0010

must be ordered separately.

	SC connector PCF		
Order no.	SXSC-SK0-02-0010	SXSC-SK0-02-0020	SXSC-SW0-02-0010
Fiber Ø	230 µm	230 µm	230 μm
Cable Ø	3.0 mm	2.2 mm	2.2 mm
Assembly	Crimping/gluing/polishing	Crimping/gluing/polishing	Clamping/cleaving
Ferrule	Metal	Metal	Metal
Reference cable	KXSC-XSC 72050cm	KXSC-XSC 72050cm	KXSC-XSC 72050cm
Kererence cable	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m
Features	Incl. crimping sleeve,	Incl. crimping sleeve,	Incl. black boot
reatures	black boot and dust cap	black boot and dust cap	and dust cap
Assembly	On request	On request	On request

Connectors for PCF differ not only in terms of their construction, but also in the technology used to attach to the cable (crimping, gluing or clamping) and in the technology used to process the end face. The focus here is on cleaving and grinding or polishing.

PCF connectors

	LC connector PCF	LC duplex clamp PCF
Order no.	SXLC-SK0-01-0030	SKLA-DU0-01-0010
Fiber Ø	230 µm	-
Cable Ø	3.0 mm	-
Assembly	Crimping/gluing/polishing	Clipping
Ferrule	Metal	
Reference cable	KXLC-XLC 72050cm	
	for attenuation measurement 0.5 m	
Features	Incl. crimping sleeve,	
reatures	white boot and dust cap	
Assembly	On request	

	SCRJ connector duplex IP20		SCRJ connector duplex IP67
Order no.	SSCR-DK0-02-0030	SSCR-DW0-02-0010	SSCR-DK0-02-0020
Fiber Ø	230 µm	230 μm	230 µm
Cable Ø	2.2 mm	2.2 mm	3.0 mm
Assembly	Crimping/gluing/polishing	Clamping/cleaving	Crimping/gluing/polishing
Ferrule	Metal	Metal	Metal
Reference cable	KSCR-SCR 61050cm	KSCR-SCR 61050cm	KSCR-SCR 61050cm
Reference cable	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m
Features	Incl. black boot	Incl. black boot	Incl. grey boot
reatures	and dust cap	and dust cap	and dust cap
Assembly	On request	On request	On request

	FSMA connector PCF		
Order no.	SSMA-SK0-01-0010	SSMA-SK0-01-0020	SSMA-SW0-02-0010
Fiber Ø	230 µm	230 µm	230 µm
Cable Ø	2.2 mm	3.0 mm	2.2 mm
Assembly	Crimping/gluing/polishing	Crimping/gluing/polishing	Clamping/cleaving
Ferrule	Metal	Metal	Metal
Reference cable	KSMA-SMA 72050cm	KSMA-SMA 72050cm	KSMA-SMA 72050cm
Reference cable	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m
Features	Incl. crimping sleeve,	Incl. crimping sleeve,	Incl. crimping sleeve,
reatures	black boot and dust cap	black boot and dust cap	black boot and dust cap
Assembly	On request	On request	K1

	FSMA connector PCF		
Order no.	SSMA-SW0-02-0020	SSMA-SK0-04-0020	SSMA-SK0-04-0030
Fiber Ø	230 µm	230 µm	230 µm
Cable Ø	3.0 mm	3.0 mm	2.2 mm
Assembly	Clamping/cleaving	Crimping/gluing/polishing	Crimping/gluing/polishing
Ferrule	Metal	Ceramic	Ceramic
Reference cable	KSMA-SMA 72050cm	KSMA-SMA 72050cm	KSMA-SMA 72050cm
Reference cable	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m
Features	Incl. black boot	Incl. black boot	Incl. black boot
reatures	and dust cap	and dust cap	and dust cap
Assembly	K1	On request	On request

PCF connectors

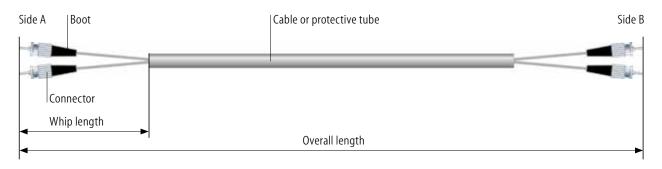
	ST connector (BFOC) PCF		
Order no.	SXST-SK0-01-0020	SXST-SK0-01-0030	SXST-SK0-04-0030
Fiber Ø	230 µm	230 µm	230 μm
Cable Ø	2.2 mm	3.0 mm	3.0 mm
Assembly	Crimping/gluing/polishing	Crimping/gluing/polishing	Crimping/gluing/polishing
Ferrule	Metal	Metal	Ceramic
Reference cable	KXST-XST 72050cm	KXST-XST 72050cm	KXST-XST 72050cm
Reference cable	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m	for attenuation measurement 0.5 m
Features	Incl. crimping sleeve,	Incl. crimping sleeve,	Incl. crimping sleeve,
reatures	black boot and dust cap	black boot and dust cap	black boot and dust cap
Assembly	On request	On request	On request

	ST connector (BFOC) PCF			E2000 connector PCF
Order no.	SXST-SW0-02-0010	SXST-SW0-02-0020	SXST-SW0-02-0030	SE2K-SC0-45-0010
Fiber Ø	230 µm	230 µm	230 µm	230 µm
Cable Ø	2.2 mm	2.5 mm	3.0 mm	2.2 – 3.0 mm
Assembly	Clamping/cleaving	Clamping/cleaving	Clamping/cleaving	Crimping/cleaving
Ferrule	Metal	Metal	Metal	Metal/ceramic
Reference cable	KXST-XST 72050cm	KXST-XST 72050cm	KXST-XST 72050cm	KE2K-E2K72050cm
	for attenuation measurement 0.5 m			
Features	Incl. black boot	Incl. black boot	Incl. black boot	Incl. boot
reatures	and dust cap	and dust cap	and dust cap	and dust cap
Assembly	К2	К2	К2	On request

PCF couplings

	Coupling for LC duplex PCF	Coupling for SC duplex PCF	Coupling for HP PCF
Order no.	NSKUP-2XXLC-0010	NSKUP-2XXSC-0010	SKUP-2XHPS-0010
Compatibility	_	_	AP 04707
Fiber Ø	230 µm	230 µm	230 μm
Housing	Plastic with ceramic insert	Metal with ceramic insert	Plastic with metal insert

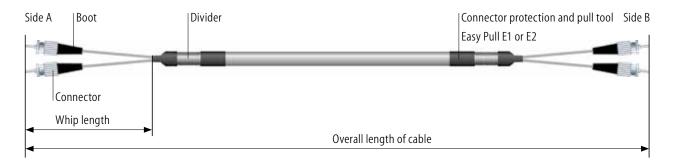
Coupling for FSMA PCF		
Order no. SKUP-2XSMA-0010		
Fiber Ø 230 µm		
Housing	Metal without separate insert	



Coupling for ST PCF
 SKUP-2XXST-0010
230 µm
Metal without separate insert

Pre-assembled PCF cables

Description of the structure of pre-assembled PCF indoor cables


- Standard whip lengths 20 ±4 cm
- Overall length tolerances ±2%

Description of the structure of pre-assembled PCF outdoor cables

- Whip lengths according to customer's wishes
- Overall length tolerances ±2%

Direct connector assembly in the field is much more complex with gelfilled outdoor cables than with indoor cables. Our Easy Pull cabling system therefore includes as standard fully tested cable ends with pre-assembled connectors for multi-fiber loose tubes with up to 32 fibers.

The production of fibers and cables in LEONI's own facilities and their careful assembly under laboratory conditions ensure superior properties and maximum reliability.

In addition to standard products, we offer a range of special product functionalities and customer-specific assembly as well as engineering and consulting.

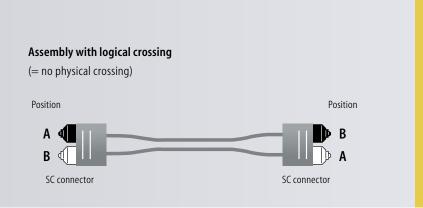
Service features

- All fiber and cable types (including hybrid cables)
- All connector types
- Every attenuation grade for different customer requirements
- Every length, even for small order sizes
- Delivery possible within 24 hours
- Customer-specific assembly
- Customer-specific cable printing
- Additional selective printing of the cable jacket during the process of cutting to length

Quality assurance

The optical attenuation is defined according to IEC60793-1-40 B for POF. The result is shown on the label.

Order number scheme


for PCF cable assembly

Cable assembly	К
Connector type Side A	
BFOC (ST [®])	XST
FSMA	SMA
HP simplex	HPS
HP duplex	HPD
F05, TOSLINK-compatible	F05
F07, TOSLINK-compatible	F07
SC	XSC
SCRJ	SCR
E2000	E2K
LC	XLC
FC/PC	FCP
Connector type Side B (see above)	E.g. XST
PCF cable code no.	
z. B. I-V(ZN)HH 2X1K200/230	64
A-V(ZN)11Y 1K200/230	74
Length	
128, 010, etc.	E.g. 325
Unit	
mm, cm, m, etc.	E.g. cm
Variants	
E.g. EZH E1	

Order example:

K XST-XST 64 325 cm

3.25 m, duplex connection cable (cable type: I-V(ZN)HH 2X 1K200/230, PCF fiber with FRNC inner jacket and FRNC outer jacket) assembled with ST connectors

Note on polarity

Please note that our products for standard and special assembly are produced acc. to ANSI/TIA/EIA-568-B.1 with logical crossing.

The products can also be assembled with physical crossing on request (please specify when ordering). 129

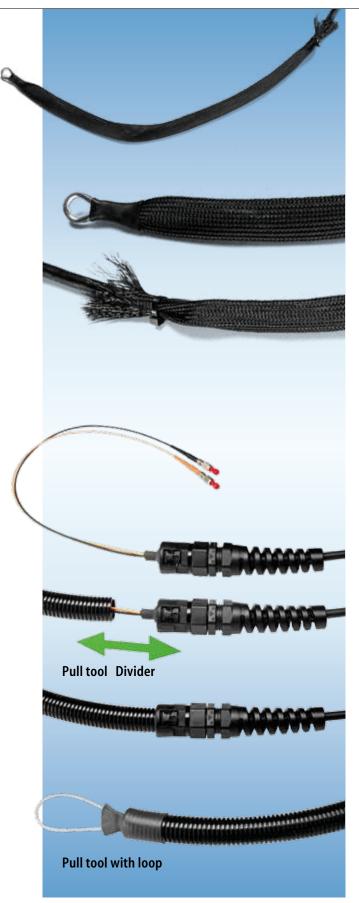
Easy Pull E1

The pull tool system can be used for assemblies with up to 4 single fibers. The connectors are optimally protected against damage during installation (in accordance with protection class IP20) and pulling in the cables is made much easier.

Once the cables have been pulled in, the pull tool can be easily removed and the connectors can be joined to the couplings or transceivers as usual at the destination. Gauging the assembly in the plant is an integral part of the delivery package.

Easy Pull 1 – no. of fibers n	2	4
min. bending radius of cable	Acc. to cable of	data sheet
min. bending radius of buffered fiber/whip	30 mm	30 mm
Minimum hole Ø for through-feeds with cabinets and walls	30 mm	30 mm
max. pull force on pull tool	500 N	600 N

You will find the corresponding cables in the chapters on glass fiber cables and PCF cables.


Easy Pull E2

This pull tool system can be used to protect assemblies with up to 32 single fibers (with IP54 protection).

The protective conduit can be easily unlatched and removed after pulling in. The connectors can be joined to couplings or transceivers as normal. Gauging the assembly in the plant is an integral part of the delivery package.

Easy Pull 2 – no. of fibers n	2	4	5 to 12	13 to 32
min. bending radius of cable		Acc. to cabl	e data sheet	
min. bending radius of buffered fiber/whip	30 mm	30 mm	30 mm	30 mm
Outer Ø of divider element	14 mm	14 mm	21 mm	30 mm
Resistance to apex pressure (protective conduit)	350 N	350 N	350 N	350 N
max. pull force on pull tool	500 N	500 N	600 N	600 N
PG cable gland	M20 (PG13.5)	M25 (PG21)	M25 (PG21)	M50 (PG36)
Outer Ø of protective conduit	20 mm	30 mm	30 mm	55 mm
Minimum hole Ø for through-feeds with cabinets and walls	35 mm	40 mm	45 mm	60 mm
Material (protective conduit)		PA 6 (flame-retardant/h	alogen-free/UV-stable)	

131

Divider for Easy Pull E1

The divider specially developed for the Easy Pull E2 system contains no metal and is especially sturdy despite its low weight.

Its design means that the wall bushings needed during installation are only marginally larger than the divider itself. All that is needed to remove the pull tool is a sharp knife and a cutting pliers.

Divider for Easy Pull E2

Properties

The divider specially developed for the Easy Pull E2 system contains no metal and is especially sturdy despite its low weight.

The divider is splashproof and offers good protection against mechanical damage. The high flexibility permits trouble-free installation, even under difficult conditions. The pull tool can be removed without any tools.

- Sturdy, watertight, flexible and UV-resistant protective conduit made from PA 6, with pull tool
- Cable gland can be used for quick and secure fixing in control cabinets and boxes
- Torsion-free removal of the protective conduit for protecting the connector
- With more than two fibers, the individual whips are graduated in accordance with the customer's requirements

Large Core

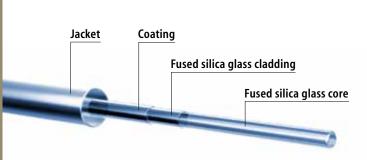
Special fibers – fused silica glass, sapphire, non-oxidic glasses

ŝπ

Fibers made from super pure silica are used for optimum light transmission from the ultra-violet range (UV) to the infrared range (IR).

We have drawing systems on which large-diameter UV-conductive silica/silica fibers (high-OH), IR-conductive silica/silica fibers (low-OH) or capillaries and tapers are drawn.

The fibers are available individually or in different buffered fiber and cable constructions. We supply core diameters from 3 µm to 10 µm for singlemode applications and from 20 µm to 2 mm for multimode applications such as spectroscopy, medical technology, energy transmission (laser technology) and sensor technology.


Silica fibers are covered with a coating consisting of acrylate, dual acrylate, high-temperature dual acrylate, silicone or polyimide. The fibers are covered with a further buffer, made from Nylon[®] or Tefzel[®] for example, so that they can be used in different temperature ranges and chemical environments. The apertures of the silica optical fibers can vary from 0.1 to 0.49.

Large Core Special fibers	132
UV-VIS fiber specifications	134
VIS-IR fiber specifications	136
HPCS and PCS fibers	139
HPCS fiber specifications	140
PCS fiber specifications	141
ASB fibers (solarisation-stable fibers)	142
MIR and FIR fibers	143
Capillaries	144
Connectors for large core fiber assemblies	145
Connectors with standard metal or ceramic ferrules	146
Couplings	147
Examples of cable constructions	148
I-V (ZN) H 1	148
I-V (ZN) Y	148

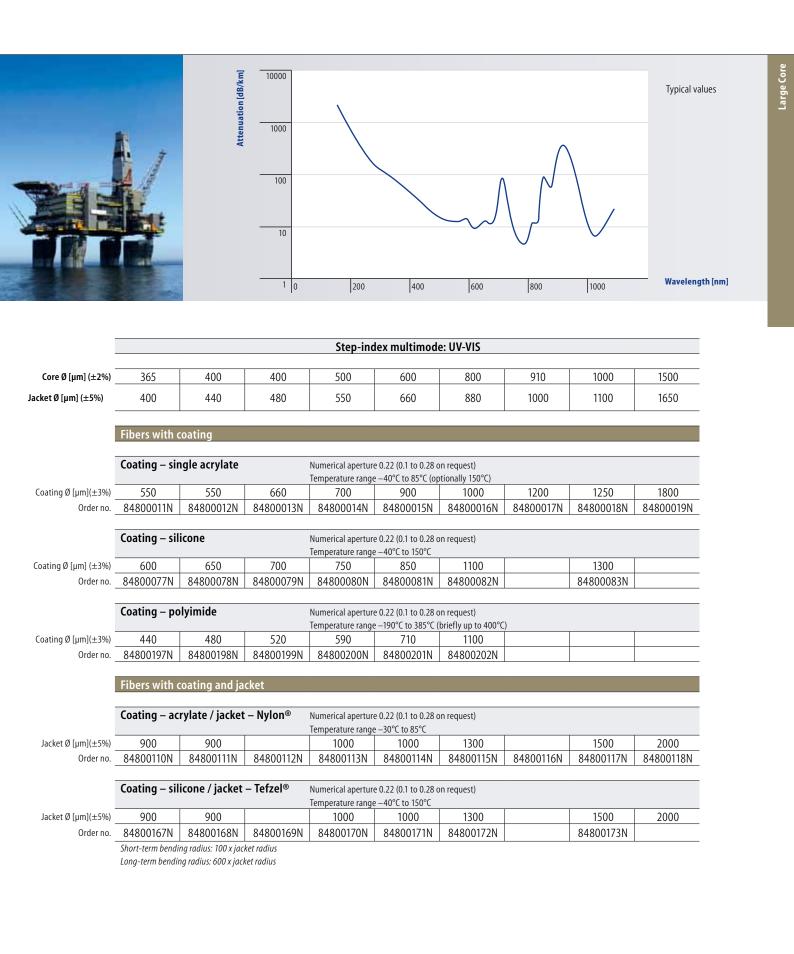
A-V (ZN) 11Y	148
I-V (ZN) Y 2x1	148
I-V (ZN) H 2x1	148
I-V (ZN) H 2Y	150
AT-V(ZN)Y 11Y	150
ADQ(ZN) BH	150
AT-VQ (ZN) HB 2Y	150
Assembling large core special fibers	152
Type designation for pre-assembled large core fibers	153

UV-VIS fiber specifications Silica/silica

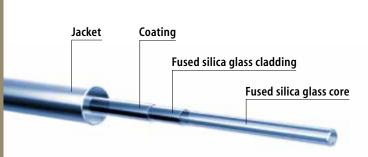
Large Core

With these step-index fibers, the core and cladding consist of pure fused silica glass with high OH content. The fibers are used in a wavelength range from 190 nm to 1100 nm (UV-VIS). The fibers themselves are covered with a coating either consisting of acrylate, silicone or polyimide.

The multimode fibers are not only used in optical data transmission, but also in sensor technology, spectroscopy, medical technology and laser applications.


_	Step-index multimode: UV-VIS										
Core Ø [µm] (±2%)	50	50	100	105	115	200	200	300	300		
Jacket Ø [µm] (±5%)	55	125	110	125	125	220	240	330	360		
-											

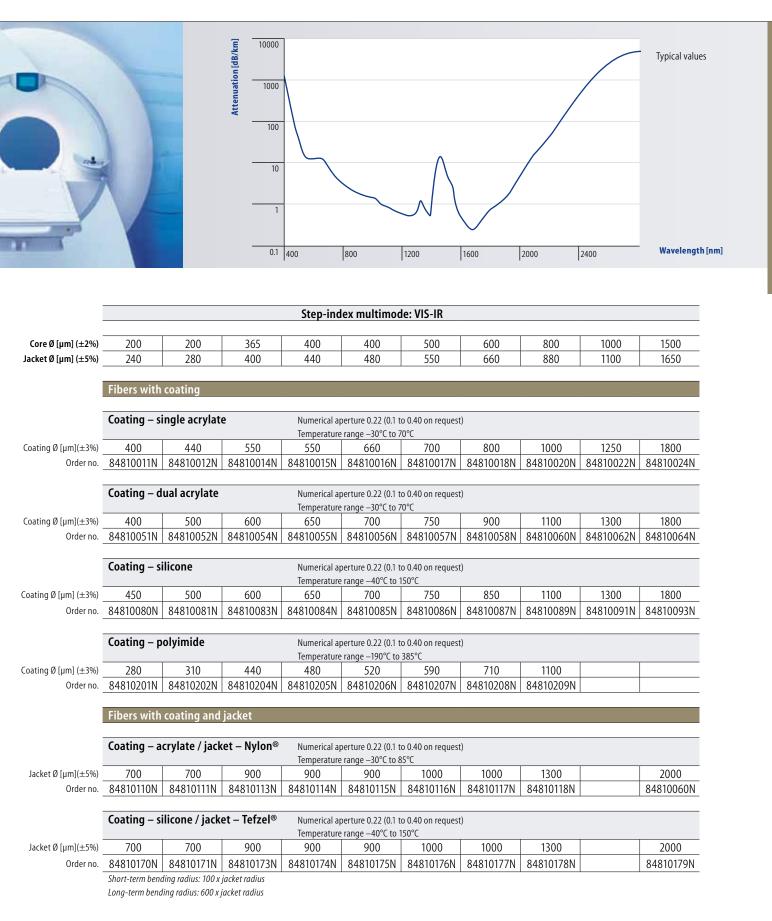
Coating - single acrylate Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -40°C to 85°C (optionally 150°C) Coating Ø [µm](±330) Order no. 125 200 200 200 200 350 400 500 500 Coating J (drama construction of the constru		Fibers with coating											
Coating θ [µm] (±3%) Temperature range -40°C to 85°C (optionally 150°C) Coating θ [µm] (±3%) 125 200 200 200 350 400 500 500 Order no. 84800002N 84800003N 84800005N 84800006N 84800006N 84800008N 84800009N 84800009N 84800009N 84800008N 84800009N 84800009N 84800009N 84800009N 84800009N 84800008N 84800038N 84800038N <t< td=""><td colspan="11"></td></t<>													
Coating Ø [µm](±3%) 125 200 200 200 350 400 500 500 Order no. 84800002N 84800003N 84800004N 84800005N 84800006N 84800007N 84800008N 84800009N		Coating – single acrylate Numerical aperture 0.22 (0.1 to 0.28 on request)											
Order no. 84800002N 84800003N 84800005N 84800006N 84800007N 84800008N 84800009N 84800010N Coating – dual acrylate Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range –40°C to 85°C (optionally 150°C) Coating Ø [µm](±3%) 180 245 245 245 350 4000 550													
Coating - dual acrylate Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -40°C to 85°C (optionally 150°C) Coating Ø [µm](±3%) 180 245 245 245 350 400 550 550 84800031N 84800032N 84800034N 84800035N 84800036N 84800037N 84800038N 84800039N Coating - silicone Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -40°C to 150°C Coating Ø [µm] (±3%) 245 245 400 450 550	Coating Ø [µm](±3%)	125	200	200	200	200	350	400	500				
Temperature range -40°C to 85°C (optionally 150°C) Coating Ø [µm] (±3%) Order no. Coating - silicone Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -40°C to 150°C Coating - silicone Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -40°C to 150°C Coating - silicone Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -40°C to 150°C Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -40°C to 150°C Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -190°C to 5°C Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -190°C to 5°C (briefly up to 400°C) Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -190°C to 5°C (briefly up to 400°C) Coating - bolyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature ran	Order no.	84800002N	84800003N 84800004N 84800005N 84800006N 84800007N 84800008N 84800009N										
Temperature range -40°C to 85°C (optionally 150°C) Coating Ø [µm] (±3%) Order no. Coating - silicone Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -40°C to 150°C Coating - silicone Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -40°C to 150°C Coating - silicone Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -40°C to 150°C Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -40°C to 150°C Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -190°C to 5°C Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -190°C to 5°C (briefly up to 400°C) Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -190°C to 5°C (briefly up to 400°C) Coating - bolyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature ran													
Coating Ø [µm](±3%) Order no. 180 245 245 245 350 400 550 550 84800031N 84800032N 84800033N 84800035N 84800036N 84800037N 84800038N 84800039N Coating – silicone Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range –40°C to 150°C Coating / ±3% Order no. 84800071N 84800072N 84800073N 84800075N 84800076N Coating – polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range –190°C to 50°C Coating – polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range –190°C to 50°C (briefly up to 400°C) Coating – polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range –190°C to 50°C (briefly up to 400°C) Coating – acrylate / jacket – Nylon® Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range –190°C to 50°C (briefly up to 400°C) Coating – acrylate / jacket – Nylon® 84800193N 84800194N<													
Order no. 84800031N 84800032N 84800033N 84800034N 84800035N 84800036N 84800037N 84800038N 84800039N Coating - silicone Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -40°C to 150°C Temperature range -40°C to 150°C Coating Ø [µm] (±3%) 245 245 245 400 450 550 Image: 500 mmodeline Order no. 84800071N 84800072N 84800073N 84800074N 84800075N 84800076N Image: 500 mmodeline I													
Coating – silicone Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range -40°C to 150°C Coating Ø [µm] (±3%) 245 245 245 400 450 550	5 1 1		-	_		-							
Temperature range -40°C to 150°C Coating Ø [µm] (±3%) 245 245 245 400 450 550	Order no.	84800031N	84800032N	84800033N	84800034N	84800035N	84800036N	84800037N	84800038N	84800039N			
Temperature range -40°C to 150°C Coating Ø [µm] (±3%) 245 245 245 400 450 550													
Coating Ø [µm] (±3%) 245 245 245 400 450 550		Coating – silicone Numerical aperture 0.22 (0.1 to 0.28 on request)											
Order no. 84800071N 84800072N 84800073N 84800074N 84800075N 84800076N Image: Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Image: Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Image: Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Image: Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Image: Coating - polyimide Image: Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Image: Coating - polyimide Image: Coating - polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Image: Coating - polyimide Image: Coating - polyimide <td></td> <td></td> <td></td> <td></td> <td></td> <td>-40°C to 150°C</td> <td></td> <td></td> <td></td> <td></td>						-40°C to 150°C							
Coating – polyimide Numerical aperture 0.22 (0.1 to 0.28 on request) Temperature range –190°C to 50°C (briefly up to 400°C) Coating Ø [µm] (±3%) 150 125 150 240 280 360 Order no. 84800191N 84800192N 84800193N 84800194N 84800195N 84800196N Fibers with coating and jacket Coating – acrylate / jacket – Nylon® Numerical aperture 0.22 (0.1 to 0.28 on request)	5 1 1 1		-	-									
Temperature range190°C to 50°C (briefly up to 400°C) Coating Ø [µm] (±3%) 150 125 150 240 280 360 Order no. 84800191N 84800192N 84800193N 84800194N 84800195N 84800196N Fibers with coating and jacket Coating - acrylate / jacket - Nylon® Numerical aperture 0.22 (0.1 to 0.28 on request)	Order no.	84800071N	84800072N	84800073N	84800074N	84800075N	84800076N						
Temperature range190°C to 50°C (briefly up to 400°C) Coating Ø [µm] (±3%) 150 125 150 240 280 360 Order no. 84800191N 84800192N 84800193N 84800194N 84800195N 84800196N Fibers with coating and jacket Coating - acrylate / jacket - Nylon® Numerical aperture 0.22 (0.1 to 0.28 on request)													
Coating Ø [µm] (±3%) 150 125 150 240 280 360 Order no. 84800191N 84800192N 84800193N 84800194N 84800195N 84800196N Fibers with coating and jacket Coating – acrylate / jacket – Nylon® Numerical aperture 0.22 (0.1 to 0.28 on request)													
Order no. 84800191N 84800192N 84800193N 84800194N 84800195N 84800196N Fibers with coating and jacket Coating – acrylate / jacket – Nylon® Numerical aperture 0.22 (0.1 to 0.28 on request)			Г	Г	, · · · · · · · · · · · · · · · · · · ·	–190°C to 50°C (b							
Fibers with coating and jacket Coating – acrylate / jacket – Nylon® Numerical aperture 0.22 (0.1 to 0.28 on request)	Coating Ø [µm] (±3%)			-			-						
Coating – acrylate / jacket – Nylon® Numerical aperture 0.22 (0.1 to 0.28 on request)	Order no.		84800191N	84800192N	84800193N		84800194N	84800195N	84800196N				
Coating – acrylate / jacket – Nylon® Numerical aperture 0.22 (0.1 to 0.28 on request)													
		Fibers with coating and jacket											
T	Coating – acrylate / jacket – Nylon® Numerical aperture 0.22 (0.1 to 0.28 on request)												
Temperature range –30°C to 70°C					r ' ĭ	–30°C to 70°C							
Jacket Ø [µm](±5%) 500 500 500 700 700 700	Jacket Ø [µm](±5%)		500	500	500		700	700	700				
Order no. 84800101N 84800102N 84800103N 84800104N 84800105N 84800106N 84800106N 84800107N 84800108N 84800109N	Order no.	84800101N	84800102N	84800103N	84800104N	84800105N	84800106N	84800107N	84800108N	84800109N			
Coating – silicone / jacket – Tefzel® Numerical aperture 0.22 (0.1 to 0.28 on request)			Coating – silicone / jacket – Tefzel® Numerical aperture 0.22 (0.1 to 0.28 on request)										
Temperature range –40°C to 150°C		Coating – sil	icone / jacket	– Tefzel®			n request)						
Jacket Ø [µm](±5%) 500 500 500 700 700 700		Coating – sil			Temperature range								
Order no. 84800161N 84800162N 84800163N 84800164N 84800165N 84800166N	Jacket Ø [µm](±5%)	Coating – sil	icone / jacket 500	– Tefzel ® 500			n request) 700	700	700				


Short-term bending radius: 100 x jacket radius

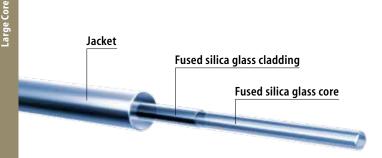
Long-term bending radius: 600 x jacket radius

135

VIS-IR fiber specifications



The core of glass fibers for IR consists of pure fused silica glass with low OH content and uniform refractive index across the entire diameter. The fibers are used in a wavelength range from 400 nm to 2400 nm (VIS-IR). The fibers themselves are covered with a coating either consisting of acrylate, silicone or polyimide.


Step-index multimode **VIS-IR**

The multimode fibers are not only used in optical data transmission, but also in sensor technology, spectroscopy, medical technology and laser applications.

	Step-index multimode: VIS-IR												
6 6 F 1 (+ P0()		50	(0)	00	100	100	100	105	200				
Core Ø [µm] (±2%)	40	50	60	90	100	100	100	105	200				
Jacket Ø [µm] (±5%)	125	125	125	125	110	120	140	125	220				
	Fibers with	Fibers with coating											
	Coating – single acrylate Numerical aperture 0.22 (0.1 to 0.40 on request) Temperature range –30°C to 70°C												
Coating Ø [µm](±3%)	200	200	200	200	200	200	200	205	350				
Order no.	84810001N	84810003N	84810004	84810005N	84810006N	84810007N	84810008N	84810009N	848100010N				
	Coating – dual acrylate Numerical aperture 0.22 (0.1 to 0.40 on request)												
C .: C [](+ 20()	245	245	245		range –30°C to 7	1	245	245	100				
Coating Ø [µm](±3%)	245	245	245	245	245	245	245	245	400				
Order no.	84810041N	84810043N	84810044N	84810045N	84810046N	84810047	84810048N	84810049N	84810050N				
	Coating – silicone Numerical aperture 0.22 (0.1 to 0.40 on request) Temperature range –40°C to 150°C												
Coating Ø [µm](±3%)	245	245	245	245	245	245	245	245	400				
Order no.	84810071N	84810072N	84810073N	84810074N	84810075N	84810076N	84810077N	84810078N	84810079N				
		0101007211	0.0.000.011	0.01007.111	0.0.00.00	0.0.007.011	0.00007711	0 10 10 07 011	0101007711				
	Coating – p	Coating – polyimide Numerical aperture 0.22 (0.1 to 0.40 on request) Temperature range – 190°C to 385°C											
Coating Ø [µm] (±3%)	150	150	150	150	125	140	170	150	240				
Order no.	84810191N	84810193N	84810194N	84810195N	84810196N	84810197N	84810198N	84810199N	84810200N				
	Fibers with	Fibers with coating and jacket											
	Coating – acrylate / jacket – Nylon® Numerical aperture 0.22 (0.1 to 0.40 on request)												
				Temperature	range –30°C to 7	70°C							
Jacket Ø [µm](±5%)	500	500	500	500	500	500	500	700	700				
Order no.	84810101N	84810103N	84810104N	84810105N	84810106N	84810107N	84810108N	84810109N	84810109N				
	Coating -si	Coating –silicone / jacket – Tefzel® Numerical aperture 0.22 (0.1 to 0.40 on request)											
	5				range –40°C to 1								
Jacket Ø [µm](±5%)	500	500	500	500	500	500	500	500	700				
Order no.	84810161N	84810162N	84810163N	84810164N	84810165N	84810166N	84810167N	84810168N	84810169N				
	Short-term bend	ding radius: 100 x	jacket radius										
	Short-term bending radius: 100 x jacket radius Long-term bending radius: 600 x jacket radius												

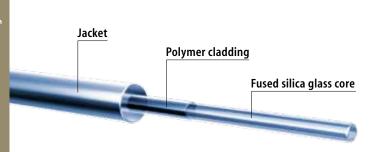
VIS-IR fiber specifications

The gradient-index multimode fiber is a glass fiber possessing a reduced mode dispersion compared to a normal step-index multimode fiber. The optical density of the core material decreases continuously in a gradient fiber from the middle to the borders. Because of this, the mode 0 along the optical axis, which possesses the shortest path in the fiber, will diffuse in the densest medium. Higher modes with longer paths will diffuse mostly in the less dense medium. Thus, the diffusion velocity and the dispersion will be reduced. A bandwidth of up to 1 GHz \times km is reached.

Due to the core profile the light does not spread in zigzag but bended paths. The pulse form in the gradient-index fiber remains more stable compared to the pulse form observed at the end of a step-index fiber. If the gradient-index fiber is for example not completely illuminated, the diameter of the beam will be almost kept to the end of the fiber. There are gradient-index fibers designed for power delivery and data transfer.

	Gradient-index multimode: VIS-IR										
Core Ø [µm] (±2%)	50	62.5	85	100	200	400	600				
Jacket Ø [μm] (±5%)	125	125	125	100	280	560	840				
	.25	125	.25		200	500					
	Fibers with co	ibers with coating									
Transmission properties											
Numerical aperture	0.2	0.275	0.26	0.29	0.29	0.29	0.29				
Attenuation at 850 nm [dB/km]	3/2.7	3.5/3.2	3.5/3	4/3.5	6	8	10				
Attenuation at 1300 nm [dB/km]	1/0.7	1/0.9	1/0.9	1.5/1.0	3	4	5				
Bandwidth at 850 nm [MHz x km]	300/600	300/400	200	200	150	100	100				
Bandwidth at 1300 nm [MHz x km]	600/1200	550/1000	200	200	150	100	100				
	Coating – acry	late									
Coating Ø [µm](±3%)	250	250	250	200	450	700	1000				
Order no.	84810501N	84810502N	84810503N	84810504N	84810505N	84810506N	84810507N				
	Coating – polyimide										
Coating Ø [µm] (±3%)	140	140	140	155	300	580					
Order no.	84810511N	84810512N	84810513N	84810514N	84810515N	84810516N	84810517N				

HPCS and PCS fibers



In addition to the widely used silica/silica fibers, there is a further fiber type with an optical core made from fused silica glass and an optical cladding made from polymer. The main advantage of this design compared with the conventional design is the increased numerical aperture, which can be adjusted to a value of up to 0.49.

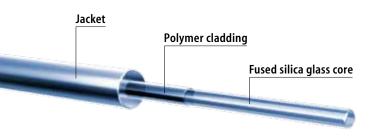
The special properties of this fiber are defined by the special material combination. The mechanical and thermal properties usually differ greatly depending on the manufacturer and polymer used, while the optical properties are often identical. The use of this type of fiber must therefore be agreed with the manufacturer on a case-by-case basis.

The PCF fibers (see page 110) are specially designed for transferring data when using quick-assembly connectors. The PCS and HPCS fibers are optimised for use in the medical laser area and in spectroscopy. They are not suitable for the applications described for PCF fibers.

HPCS fiber specifications

The designation hard plastic clad silica (HPCS) stands for the combination of fused silica glass core and polymer cladding consisting of a fluorinated acrylate. This combination offers a cost-effective alternative to the silica/silica glass fiber.

NA 0.28-0.49 Alternative HPCS


This fiber type can be used to transport low to medium power ratings over short distances with relatively low losses. A Tefzel[®] or Nylon[®] layer is additionally applied as a jacket (as a buffer function) to improve the mechanical, chemical and thermal properties.

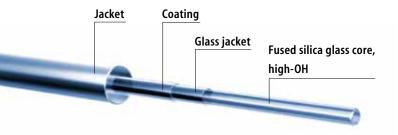
	Hard plastic clad silica (HPCS)										
Core Ø [µm] (±2%)	110	125	200	300	400	600	800	1000			
Cladding Ø [µm] (±3%)	125	150	230	330	430	630	840	1050			
Jacket Ø [µm] (±5%)	600	500	500	500	730	950	1000	1400			
	HPCS-IR fibe	rs with Nylon	® jacket								
Fiber type	HPCS110IRN	HPCS125IRN	HPCS200IRN	HPCS300IRN	HPCS400IRN	HPCS600IRN	HPCS800IRN	HPCS1000IRN			
Order no.	84890103N	84890105N	84890107N	84890111N	84890114N	84890117N	84890118N	84890101N			
	HPCS-IR fibe	rs with Tefzel	® jacket								
Fiber type	HPCS110IRT	HPCS125IRT	HPCS200IRT	HPCS300IRT	HPCS400IRT	HPCS600IRT	HPCS800IRT	HPCS1000IRT			
Order no.	84890121N	84890120N	84890109N	84890112N	84890115N	84890116N	84890119N	84890102N			
	HPCS-UV fibers with Nylon® jacket										
Fiber type	HPCS110UVN	HPCS125UVN	HPCS200UVN	HPCS300UVN	HPCS400UVN	HPCS600UVN	HPCS800UVN	HPCS1000UVN			
Order no.	84890220N	84890218N	84890204N	84890208N	84890213N	84890211N	84890215N	84890201N			
	HPCS-UV fib	ers with Tefze	l® jacket								
Fiber type	HPCS110UVT	HPCS125UVT	HPCS200UVT	HPCS300UVT	HPCS400UVT	HPCS600UVT	HPCS800UVT	HPCS1000UVT			
Order no.	84890219N	84890217N	84890207N	84890209N	84890210N	84890212N	84890216N	84890214N			

Find out about other possible specifications.

PCS fiber specifications

NA 0.38 **Alternative PCS**

The designation plastic clad silica (PCS), as with the HPCS fiber, stands for a combination of fused silica glass core and siliconeplastic cladding. Silicone guarantees higher temperature resistance, which means that higher power ratings can be transmitted. This fiber type can be used to transport medium to high power ratings over short distances with relatively low losses.


A Tefzel® or Nylon® layer is additionally applied as a jacket (as a buffer function) to improve the mechanical, chemical and thermal properties.

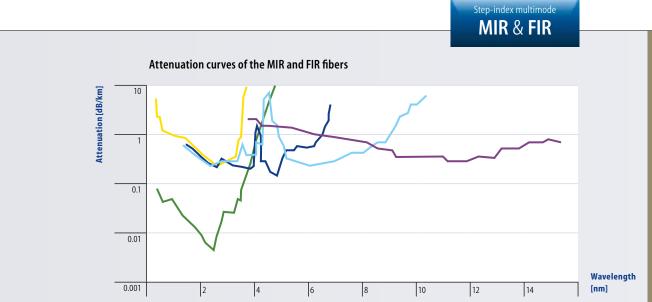
	Plastic clad silica (PCS)							
		1	1	1				1
Core Ø [µm] (±2%)	110	125	200	300	400	600	800	1000
Cladding Ø [µm] (±3%)	190	200	350	450	550	800	950	1250
	PCS-IR fibers	s with Nylon®	jacket					
Fiber type	PCS100IRN	PCS125IRN	PCS200IRN	PCS300IRN	PCS400IRN	PCS600IRN	PCS800IRN	PCS1000IRN
Order no.	84880302N	84880312N	84880305N	84880314N	84880307N	84880308N	84880416N	84880318N
Jacket Ø [µm] (±5%)	400	400	500	650	850	1000	1300	1650
	PCS-IR fibers	s with Tefzel®	jacket					
Fiber type	PCS110IRT	PCS125IRT	PCS200IRT	PCS300IRT	PCS400IRT	PCS600IRT	PCS800IRT	PCS1000IRT
Order no.	84880310N	84880311N	84880306N	84880313N	84880315N	84880309N	84880417N	84880301N
Jacket Ø [µm] (±5%)	400	400	500	650	850	950	1300	1650
	PCS-UV fibe	rs with Nylon ^ឲ	[®] jacket					
Fiber type	PCS110UVN	PCS125UVN	PCS200UVN	PCS300UVN	PCS400UVN	PCS600UVN	PCS800UVN	PCS1000UVN
Order no.	84880420N	84880418N	84880406N	84880416N	84880409N	84880411N	84880414N	84880309N
Jacket Ø [µm] (±5%)	400	400	500	650	850	1000	1300	1650
	PCS-UV fibe	rs with Tefzel®	[®] jacket					
Fiber type	PCS110UVT	PCS125UVT	PCS200UVT	PCS300UVT	PCS400UVT	PCS600UVT	PCS800UVT	PCS1000UVT
Order no.	84880419N	84880417N	84880407N	84880408N	84880410N	84880412N	84880415N	84880402N
Jacket Ø [µm] (±5%)	400	400	500	650	850	950	1300	1650

Find out about other possible specifications.

ASB fibers (solarisation-stable fibers)

Progressive absorption of the fibers to the point of complete failure occurs when using UV-VIS fibers <240 nm.

Our solarisation-stable fibers can be used for applications in this critical range. These newly developed fibers with high OH content are characterised by very good transmission in the 190–250 nm range.


The relative transmission is shown in the graph. A deuterium light source was used for the measurement.

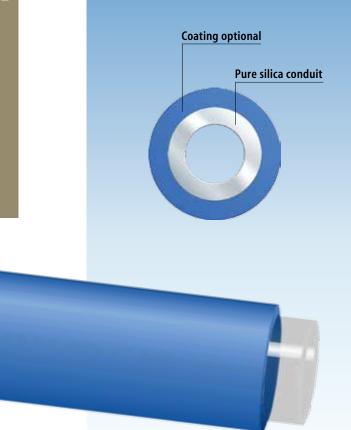
				Step-index mu	timode: UV-VIS			
				<u></u>				
Core Ø [µm] (±2%)	100	200	300	400	500	600	800	1000
Jacket Ø [µm] (±2%)	110	220	330	440	550	660	880	1100
	Coating – sing	le acrylate						
Coating Ø [μ m] (±3%)	160	270	400	520	630	740	980	1200
Order no.	84808 011N0000	84808 012N0000	84808 013N0000	84808 014N0000	84808 016N0000	84808 017N0000	84808 018N0000	84808 019N0000
	Coating – silic	one						
Coating Ø [µm] (±3%)	240	340	440	550	680	780	990	1230
Order no.	84808 020N0000	84808 021N0000	84808 022N0000	84808 023N0000	84808 025N0000	84808 026N0000	84808 027N0000	84808 028N0000
	Coating – poly	vimide						
Coating Ø [µm] (±3%)	135	245	355	465	575	685		
Order no.	84808 003N0000	84808 004N0000	84808 005N0000	84808 006N0000	84808 008N0000	84808 009N0000		
	Jacket: Nylon® or Te	fzel®						

Jacket: Nylon® or Tefzel®

Further specifications (including CCDR) are possible

MIR and FIR fibers

Coating Fused silica glass cladding Fused silica glass core


Optical fibers absorb very strongly starting from a wavelength range of approximately 2500 nm. Therefore special fibers, which work within the middle infrared range, were developed.

Differently doped glass fibers, polycrystalline or crystalline waveguides are used in the medium to far infrared range. Typical applications are endoscopy and spectroscopy.

	MIR and FIR fibers – Properties						
Description of the structure	Chalcogenide IR fibers CIRSe	Chalcogenide IR fibers CIRS	Fluoride glass fibers ZrF	Polycrystalline IR fibers PIR	Sapphire SAP		
Core material	Selenium compound	As_2S_3 compound	Heavy metal fluoride com- pound (zirconium fluoride base)	AgBrCl compound	Sapphire		
Cladding	Selenium compound	AsS compound	Heavy metal fluoride compound	AgBrCl compound, Cl- enriched			
Coating	Dual acrylate	Dual acrylate	Dual acrylate	Dual acrylate	PTFE		
Core Ø	SM Multimode 50 – 700 μm	SM Multimode 50 – 750 µm	SM Multimode 50 – 750 μm	Multimode 200 – 900 µm	Multimode 150 – 425 µm		
Properties							
Wavelength range	2 – 9 µm	2 – 6 µm	400 nm – 4 µm	4 μm – 18 μm	400 nm – 3.5 µm		
Temperature (without coating)	-100°C to +200°C	-10°C to +120°C	-10°C to +80°C	-100°C to +200°C	Up to +1000°C		
Areas of application	Chemical sensors, fiber amplifiers, fiber lasers	Chemical sensors, fiber amplifiers, fiber lasers	IR sensor technology, IR interferometry, IR laser transmission, fiber amplifiers, fiber lasers	Chemical sensors, temperature sensors	Medical technology, laser light transmission, chemical sensors, Er: YAG lasers		
Order no.	On request 8483000xx	On request 8483002xx	On request SM 8483006xx MM 8483004xx	On request	On request		

Capillaries

144

Capillaries

- Good strength propertiesAvailable for UV and IR range
- Pressure resistant
- Polyimide coating for high-temperature applications and chemically harsh environments
- Smooth inner surface

Application	Electrophoresis	
	Chromatography	
	Connection of fibers	
	Fiber splices	
	Fiber optical componen	ts
	High-pressure miniature	e conduits
	Beam optics	
Properties	Inner diameter	50–2000 µm
	Wall thickness	30–1000 µm
	Diameter tolerance	On request
	Length (dependent on Ø)	1 m–10 km
	End face processing	Cut or broken
Optional properties	Polyimide coating	–190 to 385°C
	Acrylate coating	-40 to 85°C
	High-temperature	
	acrylate coating	-40 to 200°C
	Silicone coating	-40 to 180°C

Connectors for large-core fiber assemblies

	Standard SMA connector	High-power SMA connector LC 100
Order no.	SSMA-M-F	SSMA-HP100-M-F-short/long
Hole	128 – 1500 µm	128 – 1500 μm
Assembly	Crimping/gluing/polishing	Clamping/polishing
Ferrule	Metal Ø 3.17 mm	Metal Ø 3.17 mm Connector long 45 mm / short 30 mm
Features	Free-standing fiber Hexagonal or knurled union nut	Free-standing fiber Adhesive-free assembly Long or short design available

	High power LC 1000
Order no.	S-HP1000-M-F-10(15)
Hole	480 – 1100 μm
Assembly	Clamping/polishing
Ferrule	Metal
renule	Length 57 mm, Ø 10 or 15 mm
	Mode stripper
Features	Free-standing fiber
reatures	Adhesive-free assembly compatible
	with standard laser systems

Special high power	r connector
S-SHP-4x10-M-F	
480 – 1500 µm	
Clamping/polishing	
Metal	
Length 10 mm, Ø 4 mm	l

Free-standing fiber in ceramic insert, adhesive-free assembly

Connectors with standard ferrules in metal or ceramic

	DIN connectors	ST connector (BFOC)		FC PC connector
Order no.	SDIN-M	SXST-SKO-M	SXST-SKO-C	SFCPC-SK0-M
Hole	128 – 1500 µm	125 µm — 1000 µm	125 µm – 600 µm	125 μm – 1000 μm
Assembly	Crimping/gluing/polishing	Crimping/gluing/polishing	Crimping/gluing/polishing	Crimping/gluing/polishing
Ferrule	Metal	Metal	Ceramic	Metal, ferrule with spring or fixed
Features	Anti-twist protection, knurled union nut	Incl. orange or black boot and dust cap	Incl. black boot and dust cap	Incl. red boot and dust cap

	FC PC connector	FC APC connector	SMA connector knurl	
Order no.	SFCP-SKO-C	SFCA-SKO-C	SSMA-SKO-M	SSMA-SKO-C
Hole	125 µm – 600 µm	125 μm – 600 μm	125 μm – 1500 μm	125 μm – 1500 μm
Assembly	Crimping/gluing/polishing	Crimping/gluing/polishing	Crimping/gluing/polishing	Crimping/gluing/polishing
Ferrule	Ceramic	Ceramic	Metal	Ceramic
Features	Incl. black boot	Incl. black boot	Incl. black boot	Incl. black boot
reatures	and dust cap	and dust cap	and dust cap	and dust cap

Couplings

	Coupling for FCPC PCF		Coupling for SC PCF
Order no.	SKUP-2XFCP-0010	SKUP-2XFCP-0020	SKUP-2XSCR-0010
Fiber Ø	SM, MM	SM, MM	MM
Housing	Metal and metal insert	Metal and ceramic insert	Plastic and ceramic insert

	Coupling for FSMA PCF
Order no.	SKUP-2XSMA-0010
Fiber Ø	ММ
Housing	Metal without separate insert

Coupling for ST PCF
SKUP-2XXST-0010
MM
Metal with metal insert

Coupling for LC PCF
SKUP-2XXLC-0010
SM, MM
Metal with ceramic insert

	DIN coupling
Order no.	SKUP-2xDIN-0010
Housing	Metal and metal insert
Feature	Hexagonal fitting

Examples of cable constructions

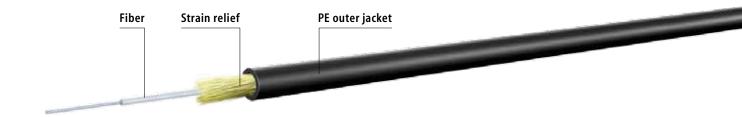
I-V (ZN) H 1		
Order no.	Depends on fiber, on request	
Application	For fixed indoor installation	
Length	500 m and above	

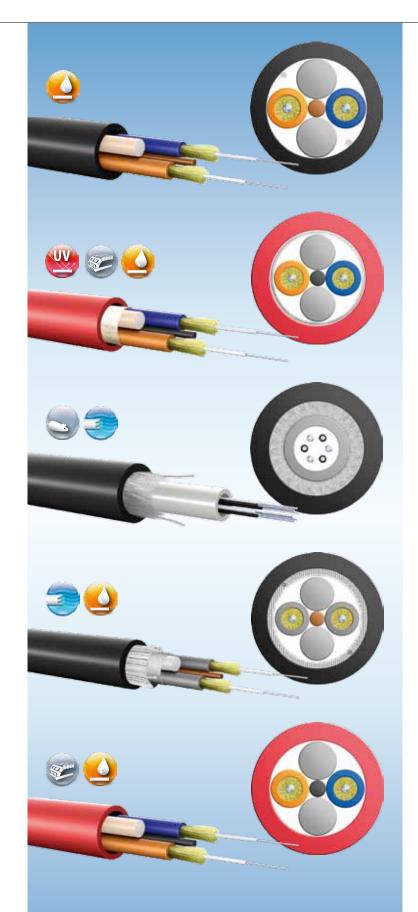
I-V (ZN) Y	
Order no.	Depends on fiber, on request
Application	For indoor installation
Length	500 m and above

A-V (ZN) 11Y		
Order no.	Depends on fiber, on request	
Application	For outdoor installation	
Length	500 m and above	

I-V (ZN) Y 2x1		
Order no.	Depends on fiber, on request	
Application	For indoor installation	
Length	500 m and above	

I-V (ZN) H 2x1		
Order no.	Depends on fiber, on request	
Application	For indoor installation	
Length	500 m and above	


Info


An increase of up to 2 dB/km in the fiber attenuation value is to be expected when fibers are combined into cables.

Good mechanical protection is usually needed for using fibers in a variety of different applications.

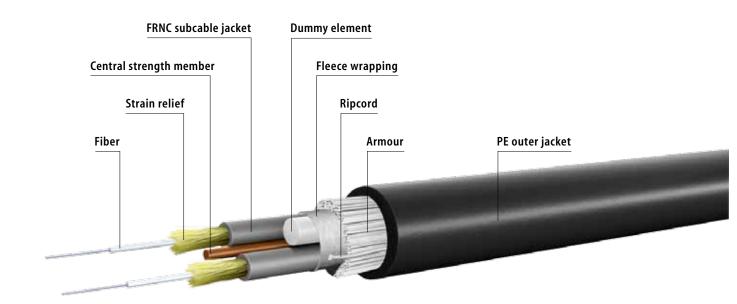
For smaller lengths (<500 m), we offer a range of different protective tubes from the simple PVC tube to the costly metal corrugated tube (see chapter on tubes). The fibers are pulled into the tube. For longer lengths (>500 m) it is possible to manufacture a cable.

Large-core fiber cable specifications		I-V (ZN) H 1	I-V (ZN) Y	A-V (ZN) 11Y	I-V (ZN) Y 2x1	I-V (ZN) H 2x1
Order no.			Dep	oends on fiber, on re	quest	
Composition	Outer jacket material	FRNC	PVC	PUR	PVC	FRNC
	Buffer tube material	-	_	_	_	_
	No. of fibers	1	1	1	2	1
	Outer Ø [mm]	2.2	2.2	3.0	2.2 x 4.5	2.2 × 4.5
Mechanical	min. bending radius [mm]		Depends on fiber, on request			
properties	max. pull force [N]		Depends on fiber, on request			
Thermal	Operating temperature [°C]		Depends on fiber, on request			
properties	operating temperature [C]					

I-V (ZN) H 2Y	
Order no.	Depends on fiber, on request
Application	For outdoor installation
Length	500 m and above

AT-V(ZN)Y	′ 11Y
Order no.	Depends on fiber, on request
Application	For indoor and outdoor installation
Length	500 m and above

ADQ(ZN) BH		
Order no.	Depends on fiber, on request	
Application	For outdoor installation	
Length	500 m and above	


AT-VQ (ZN) HB 2Y					
Order no.	Depends on fiber, on request				
Application	For outdoor installation				
Length	500 m and above				

I-V (ZN) H 11Y					
Order no.	Depends on fiber, on request				
Application	For indoor installation				
Length	500 m and above				

Examples of cable constructions

Large-core cable spec		I-V (ZN) H 2Y	AT-V(ZN)Y 11Y	ADQ(ZN) BH	AT-VQ (ZN) HB 2Y	I-V (ZN) H 11Y				
Order no.			Depends on fiber, on request							
	Outer jacket material	PE	PUR	PE	PUR	FRNC/PE				
Composition	Buffer tube material	FRNC	PVC	FRNC	PVC	PVC				
composition	No. of fibers Outer Ø [mm]		2	2	2	2				
			7.0	7.0	7.0	7.5				
Mechanical	min. bending radius [mm]	Depends on fiber, on request								
properties	max. pull force [N]	[N] Depends on fiber, on request								
Thermal properties	Operating temperature [°C]		Depends on fiber, on request							

151

Assembling Large-core special fibers

152

Fields of application

- Lighting
- Biotechnology
- Energy research
- Explosion-proof lighting
- Fluid level sensors
- High-temperature-resistant series
- High vacuum
- Nuclear facilities
- Communications systems
- Laser marking
- Laser welding/joining
- Laser separating
- Air and space travel
- Semi-conductor production
- Measuring instruments
- Defense technology
- Mode-mixing designs for all fibers and fiber bundle types
- Non-linear optics
- Optical pyrometers
- Quality control

You will find pre-assembled products in the chapter "Optical Components" (page 203).

Assembly

All cables and sensors are produced according to the customer's specification.

Service features	 All fiber and cable type 	es (including hybrid cables)					
	as well as protective tu	ube types					
	 All connector types 						
	 Every attenuation grade for different 						
	customer requirement	S					
	Every length, even for	small order sizes					
	 Delivery possible within 	in 24 hours					
	 Customer-specific asse 	embly					
	 Customer-specific cabl 	le printing					
	 Additional selective pr 	inting of the cable jacket					
	possible during the pro	ocess of cutting to length					
Connectors	We offer connectors						
	for large-core fibers	for all fiber diameters					
		for various cable diameters					
	 with metal ferrule 	available from 125–1000 µm					
	 with ceramic ferrule 	available from 125–800 µm					
	Connector types						
	SMA, FC/PC, DIN, ST ar	nd customer-specific connectors					
Protective tube	■ PTFE						
variants	PVC						
(see chapter on tubes)	Metal – PVC						
	Metal – silicone						
	 Stainless steel 						
Quality assurance	The optical attenuation is	defined according					
	to IEC61300-3-4 C for large	e core fibers.					

Type designation for pre-assembled large core fibers

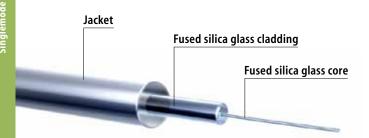
		CM O	03 x A()1 - 0	8/4	4 av (03 x 0	2/03	x 09 -	5500	mm
Fiber optical single cable	CS				-, •• 	- 97 '					
iber optical single cable	CM -						1				
ber optical multi-cable	CM										
•	SE										
nsor	25						1				
o. of fibers in bundle or bundle Ø	E.g. 003 -										
ber type (code no./cable type)	E.g. A01										
imary cable tube	Code										
one	00										
/C	01 -										
olyamide (PA)	02										
uoropolymer (PTFE)	03										
EEK	04										
blyurethane (PU)	05										
lyethylene (PE)	06										
licone (S)	07										
etal – PVC	08 -						1				
etal – PA	09						1				
etal – PU	10						1				
letal – S	11						1				
letal – single-interlocked	12						1				
etal – double-interlocked	13						1				
etal – limited bending	14						1				
ther special shapes	15										
uter Ø (mm)	E.g. 4.4						1				
	5										
ube colour	Code										
ue	bl										
ellow	yl										
lack	bk										
range	or										
ireen	gn										
Vhite	wt										
atural	nt										
ransparent	tr										
liolet	vi						1				
rey							1				
	gy										
onnector, side A											
umber (in units)	E.g. 03 -										
/pe	Code										
MA – knurl	01										
AA – hexagon	02]			
MA – free-standing	03										
MA – free-standing MA – free-standing	03										
IN	04										
IN – resilient	06										
-PC	07										
-APC	08										
	09										
igh power 4 mm	10										
C100 short	11										
C100 long	12										
21000/10	13										
21000/15	14										
pecial connector (acc. to customer's specification)	15										
nnector, side B	F (5										
umber (in units)	E.g. 03										
pe	Code										
e above	E.g. 09 -										
sembly											
erall length	E.g. 5500 -										
ngth unit	mm -										
	cm										
	m										
ersion no.	E.g. 001 -										
	L.g. 001										

Singlemode

Special fibers

In addition to the standard singlemode fibers, there is an entire range of fibers whose cut-off wavelength is adapted to specific wavelength ranges.

Polarisation-maintaining (PM) fibers are another group of singlemode fibers. With PM fibers, the required polarisation behaviour of the fibers is produced through a direction-dependent disparity in the distribution of the refractive index.


If polarised light is launched into this type of fiber, this polarisation alignment is maintained over the entire fiber length.

Singlemode Special fibers	154
Fiber specifications	156
Polarisation-maintaining fiber specifications	158
Measurements on singlemode special fibers	160
Cables with singlemode special fibers	162
I-V (ZN) H 1	162
I-V (ZN) Y	162
A-V (ZN) 11Y	162
I-V (ZN) Y 2x1	162
I-V (ZN) H 2x1	162
I-V (ZN) H 2Y	164
AT-V(ZN)Y 11Y	164
ADQ(ZN) BH	164
AT-VQ (ZN) HB 2Y	164
I-V (ZN) H 11Y	164
Pre-assembled cables with singlemode special fibers	166

Connector for singlemode special fibers	167
FCPC connector UV-IR	167
FC-APC connector UV-IR	167
ST connector (BFOC) UV-IR	167
SMA connector UV-IR	167
SP-PC connector UV-IR	167
SP-APC connector UV-IR	167
LC-PC connector UV-IR	167
Coupling for singlemode special fibers	168

Singlemode

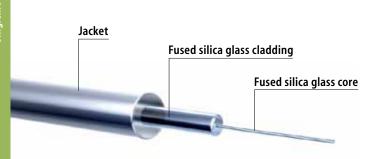
Fiber specifications

The Select-Cut-off-Fibers are optimised for a specific wavelength in the range from 400 nm to 1600 nm, in which these fibers display a singlemode characteristic.

Step-index singlemode

It is usually the mode field diameter that is mentioned with singlemode fibers and not the core diameter. This is because with singlemode fibers, a certain percentage of the light diffuses through the cladding (this is dependent on the wavelength). With singlemode fibers, the cut-off wavelength is specified. It describes the wavelength range in which the fiber functions as singlemode.

Standard applications include sensor technology and data transmission in LANs/MANs/WANs. With well over 1GHz x km, higher bandwidths are achieved and the values of the multimode fiber thus exceeded.


A large numerical aperture produces lower sensitivity to attenuation during bending. A large core diameter offers advantages during launching of light. The 125 μ m cladding diameter is compatible with telecommunications connectors.

			Select	-Cut-off-Single	emode-Fibers:	VIS-IR		
Mada Gald G []	3.5	3.3	3.5	4.4	4.0	5.0	5.6	4.2
Mode field Ø [µm]	at 460 nm	at 488 nm	at 515 nm	at 630 nm	at 630 nm	at 850 nm	at 830 nm	at 830 nm
Jacket Ø [µm]	125	125	125	125	125	125	125	80
Transmission properties								
Wavelength range [nm]	400-550	450-515	450-580	600–700	600–760	760–980	800-920	800-840
Cut-off wavelength [nm]	370	400	430	550	570	730	730	700
Attenuation [dB/km]	35 at 460 nm	12 at 630 nm	12 at 630 nm	15 at 630 nm	12 at 630 nm	3.5 at 850 nm	5 at 830 nm	5 at 830 nm
Numerical aperture	0.12	0.10-0.14	0.13	0.10-0.14	0.13	0.13	0.10-0.14	0.14-0.18
					-		-	-
	Coating – acr	í						
Coating Ø [µm]	245	245	245	245	245	245	245	165
Order no.	84820001G	84820002E	84820003G	84820004E	84820005G	84820006G	84820007E	84820008E
	Claddings and asse	emblies available on	request.					
			Select	-Cut-off-Single	emode-Fibers:	VIS-IR		
	2.0	ГО	4.2	4.2	5.0	2.2	2.0	0
Mode field Ø [µm]	2.6 at 1100 nm	5.8 at 980 nm	4.2 at 980 nm	4.2 at 980 nm	5.9 at 980 nm	3.3 at 1100 nm	2.6 at 1100 nm	9 at 1310 nm
Jacket Ø [µm]	125	125	125	80	125	125	125	80
		1	1		1		1	1
Transmission properties		070 1010	000 1/00	000 1/00	000 4600	1100 1000	1100 1000	1250 1/10
Wavelength range [nm]	960-1600	970–1210	980–1600	980–1600	980-1600	1100-1600	1100-1600	1250-1610
Cut-off wavelength [nm]	900	920	920 3.5	920 3.5	920	1000 20	1000 20	1200 2
Attenuation [dB/km]	at 1550 nm	at 980 nm	at 980 nm	at 980 nm	at 980 nm	at 1550 nm	at 1550 nm	at 1310 nm
Numerical aperture	0.35	0.14	0.2	0.2	0.14	0.28	0.35	0.11-0.13
	Coating – acr		I	[I	[[[
Coating Ø [µm]	245	245	245	165	245	245	245	165
Order no.	84820009G	84820010E emblies available on	84820011G	84820012E	84820013G	84820014G	84820015G	84820016E
	ciuduings und usse		request.					
			Select	-Cut-off-Single	emode-Fibers:	VIS-IR		
	5.4	9.3	6.7	9.5	9.5	4.2	8.8	8.8
Mode field Ø [µm]	at 1310 nm	at 1310 nm	at 1310 nm	at 1550 nm	at 1550 nm	at 1550 nm	at 1550 nm	at 1550 nm
Jacket Ø [µm]	80	80	80	125	80	125	125	125
Transmission properties								
Wavelength range [nm]	1250–1610	1310–1620	1310-1620	1460–1620	1460–1620	1460–1620	1330–1620	1330–1620
Cut-off wavelength [nm]	1200	1250	1250	1400	1400	1430	1200	1200
2 • •	2	0.75	0.75	0.5	0.5	3	3	3
Attenuation [dB/km]	at 1310 nm	at 1310 nm	at 1310 nm	at 1550 nm	at 1550 nm	at 1550 nm	at 1550 nm	at 1550 nm
Numerical aperture	0.19-0.21	0.11	0.16	0.13	0.13	0.29-0.31	0.14	0.14
	Coating – acr		165	245	175	245	245	245
Coating Ø [µm]	165	165	165	245	165	245	245	245
Order no.	84820017E	84820018G	84820019G	84820020G	84820021G	84820022E	84820023F	84820024G

Polarisation-maintaining fiber specifications

Polarisation-maintaining fibers are special singlemode fibers that maintain the polarisation of the light in the fiber. Stress elements embedded in the cladding exert mechanical stresses on the fiber core, which leads to birefringence in the fiber core. The stress elements can have different designs. These fibers are used in networks with optical fibers, for pump lasers and for microscopic applications.

Polarisation-maintaining fibers

VIS-IR

	Polarisation-maintaining fibers: VIS-IR								
۔ Mode field Ø [µm]	3.3 at 515 nm	3.2 at 488 nm	4.0 at 515 nm	3.6 at 488 nm	4.0 at 515 nm	3.2 at 630 nm	4.0 at 630 nm		
Jacket Ø [µm]	125	125	125	125	125	125	125		
ransmission properties							1		
 Wavelength range [nm]	460-630	470-630	480-540	480-540	480-540	600-675	620-675		
- Cut-off wavelength [nm]	410	420	435	410	570	550	560		
Attenuation [dB/km]	30 at 460 nm	100 at 488 nm	30 at 480 nm	100 at 488 nm	30 at 480 nm	15 at 630 nm	12 at 630 nm		
- Fiber type	Panda	Bow tie	Panda	Bow tie	Panda	Bow tie	Bow tie		
- Numerical aperture	0.12	0.13	0.1	0.11	0.1	0.16	0.14		
-									
	Coating – acryl	ate							
Coating Ø [µm]	245	245	245	245	400	245	245		
Order no.	84821001G	84821002K	84821003H	84821004E	84821005H	84821006E	84821007K		

Fiber**Tech**®

Polarisation-maintaining fibers: VIS-IR

159

			1010	risation-main	······································			
Mode field Ø [µm]	4.0 at 630 nm	1 4.0 at 630 n	m 4.0 at 85	0 nm 5 3 at	780 nm 5.	5 at 850 nm	4.2 at 830 nm	5.5 at 850 nm
Jacket Ø [µm]	125	125	125		125	125	125	125
secure s (h.u.)	125	125	125		125	125	125	125
nission properties								
velength range [nm]	620-675	630-780	750-8	320 78	0–980	800-880	800-880	800-880
off wavelength [nm]	560	560	680		710	725	700	725
Attenuation [dB/km]	12 at 630 nm					at 850 nm	5 at 830 nm	3 at 850 nm
Fiber type		Panda	Bow		anda	Panda	Bow tie	Panda
Numerical aperture	0.13	0.13	0.16		0.12	0.11	0.16	0.11
	Continu	ulata						
Coating ([um]	Coating – acr		245		245	245	245	400
Coating Ø [µm]	165	245	245		245	245	245	400
Order no.	84821008H	848210090 emblies available on l		010E 848	21011G 8	34821012H	84821013E	84821014H
	Cladalings and assi	emones avanable on i	equesi.					
]			Polarisation	-maintaining	fibers: VIS-IR	1		
	4.5			()	F 4		7.0	0.4
Mode field Ø [µm]	4.5 at 820 nm	6.6 at 980 nm	6.6 at 980 nm	6.0 at 980 nm	5.4 at 980 nm	6.6 at 1300 nr	7.0 m at 1300 nm	8.4 at 1300 nm
Jacket Ø [µm]	80	125	125	125	125	125	80	80
		I					L	
ssion properties								
length range [nm]	800-880	950-1080	950–1080	970–1170	1020-1130			1290–1450
f wavelength [nm]	725	875	875	920	930	1150	1190	1190
tenuation [dB/km]	4 at 820 nm	2.5 at 980 nm	2.5 at 980 nm	3 at 980 nm	3 at 1064 nm	2 at 1300 nr	2 m at 1300 nm	2 at 1300 nm
Fiber type	Bow tie	Panda	Panda	Bow tie	Bow tie	Bow tie	Bow tie	Bow tie
umerical aperture	0.17	0.12	0.12	0.14	0.16	0.16	0.16	0.13
	Conting	/late						
	Coating – acry		400	245	245	245	165	
Coating Ø [µm]	Coating – acry 165	245	400				165	165
Coating Ø [µm] Order no.	165	245 84821016H			84821019E			
	165 84821015K	245 84821016H mblies available on re	84821017H	84821018E	84821019E			165 84821022K
	165 84821015K	84821016H	84821017H equest.	84821018E	84821019E	84821020		
	165 84821015K	84821016H	84821017H equest. Polarisation	84821018E -maintaining		84821020		84821022K
Order no.	165 84821015K Claddings and asse 9.5	84821016H mblies available on ra 9.5	84821017H equest. Polarisation 9.8	84821018E -maintaining 9.8	fibers: VIS-IR	84821020	E 84821021K	84821022K
Order no.	165 84821015K Claddings and asse 9.5 at 1300 nm	84821016H mblies available on ro 9.5 at 1300 nm	84821017H equest. Polarisation 9.8 at 1400 nm	84821018E - maintaining 9.8 at 1400 nm	fibers: VIS-IR 10.5 at 1550 nm	84821020	E 84821021K 10.5 n at 1550 nm	84821022K 7.8 at 1550 nm
Order no.	165 84821015K Claddings and asse 9.5	84821016H mblies available on ra 9.5	84821017H equest. Polarisation 9.8	84821018E -maintaining 9.8	fibers: VIS-IR	84821020	E 84821021K	84821022K
Order no. Mode field Ø [µm] Jacket Ø [µm]	165 84821015K Claddings and asse 9.5 at 1300 nm	84821016H mblies available on ro 9.5 at 1300 nm	84821017H equest. Polarisation 9.8 at 1400 nm	84821018E - maintaining 9.8 at 1400 nm	fibers: VIS-IR 10.5 at 1550 nm	84821020	E 84821021K 10.5 n at 1550 nm	84821022K 7.8 at 1550 nm
Order no. Mode field Ø [µm] Jacket Ø [µm] ission properties	165 84821015K Claddings and asse 9.5 at 1300 nm	84821016H mblies available on ro 9.5 at 1300 nm	84821017H equest. Polarisation 9.8 at 1400 nm	84821018E - maintaining 9.8 at 1400 nm	fibers: VIS-IR 10.5 at 1550 nm	84821020 10.5 at 1550 nr 125	E 84821021K n 10.5 n 125	84821022K 7.8 at 1550 nm
Order no. Mode field Ø [µm]	165 84821015K Claddings and asse 9.5 at 1300 nm 125	84821016H mblies available on ra 9.5 at 1300 nm 125	84821017H equest. Polarisation 9.8 at 1400 nm 125	84821018E -maintaining 9.8 at 1400 nm 125	fibers: VIS-IR 10.5 at 1550 nm 125	84821020 10.5 at 1550 nr 125	E 84821021K n 10.5 n 125	84821022K 7.8 at 1550 nm 80
Order no. Mode field Ø [µm] Jacket Ø [µm] ission properties elength range [nm] if wavelength [nm]	165 84821015K Claddings and asse 9.5 at 1300 nm 125 1290–1485 1195 1	84821016H mblies available on ra 9.5 at 1300 nm 125 1290–1485 1195 1	84821017H equest. 9.8 at 1400 nm 125 1380–1560 1290 1	84821018E -maintaining 9.8 at 1400 nm 125 1380–1560 1290 1	fibers: VIS-IR 10.5 at 1550 nm 125 1450–1620 1370 0.5	84821020 10.5 at 1550 nr 125 1450–162 1370 0.5	E 84821021K n 10.5 at 1550 nm 125 0 1500–1620 1370 1	84821022K 7.8 at 1550 nm 80 1500–1620 1370 2
Order no. Mode field Ø [µm] Jacket Ø [µm] ission properties elength range [nm] if wavelength [nm] trenuation [dB/km]	165 84821015K Claddings and asse 9.5 at 1300 nm 125 1290–1485 1195 1 at 1300 nm	84821016H mblies available on re 9.5 at 1300 nm 125 1290–1485 1195 1 at 1300 nm	84821017H equest. 9.8 at 1400 nm 125 1380–1560 1290 1 at 1400 nm	84821018E -maintaining 9.8 at 1400 nm 125 1380–1560 1290 1 at 1400 nm	fibers: VIS-IR 10.5 at 1550 nm 125 1450–1620 1370 0.5 at 1550 nm	84821020 10.5 at 1550 nr 125 1450–162 1370 0.5 at 1550 nr	E 84821021K n 10.5 at 1550 nm 125 0 1500–1620 1370 n 1 1550 nm	84821022K 7.8 at 1550 nm 80 1500–1620 1370 2 at 1550 nm
Order no. Node field Ø [µm] Jacket Ø [µm] ssion properties length range [nm] f wavelength [nm] tenuation [dB/km] Fiber type	165 84821015K Claddings and asse 9.5 at 1300 nm 125 1290–1485 1195 1195 1 at 1300 nm Panda	84821016H mblies available on ra 9.5 at 1300 nm 125 1290–1485 1195 1 at 1300 nm Panda	84821017H equest. Polarisation 9.8 at 1400 nm 125 1380–1560 1290 1 at 1400 nm Panda	84821018E -maintaining 9.8 at 1400 nm 125 1380–1560 1290 1 at 1400 nm Panda	fibers: VIS-IR 10.5 at 1550 nm 125 1450–1620 1370 0.5 at 1550 nm Panda	84821020 10.5 at 1550 nr 125 1450–162 1370 0.5 at 1550 nr Panda	E 84821021K 10.5 n 10.5 at 1550 nm 125 0 1500–1620 1370 1 n at 1550 nm Bow tie	84821022K 7.8 at 1550 nm 80 1500–1620 1370 2 at 1550 nm Bow tie
Order no. Node field Ø [µm] Jacket Ø [µm] ssion properties length range [nm] wavelength [nm] wavelength [nm] Fiber type	165 84821015K Claddings and asse 9.5 at 1300 nm 125 1290–1485 1195 1 at 1300 nm	84821016H mblies available on re 9.5 at 1300 nm 125 1290–1485 1195 1 at 1300 nm	84821017H equest. 9.8 at 1400 nm 125 1380–1560 1290 1 at 1400 nm	84821018E -maintaining 9.8 at 1400 nm 125 1380–1560 1290 1 at 1400 nm	fibers: VIS-IR 10.5 at 1550 nm 125 1450–1620 1370 0.5 at 1550 nm	84821020 10.5 at 1550 nr 125 1450–162 1370 0.5 at 1550 nr	E 84821021K n 10.5 at 1550 nm 125 0 1500–1620 1370 n 1 1550 nm	84821022K 7.8 at 1550 nm 80 1500–1620 1370 2 at 1550 nm
Order no. Node field Ø [µm] Jacket Ø [µm] ssion properties length range [nm] wavelength [nm] wavelength [nm] Fiber type	165 84821015K Claddings and asse 9.5 at 1300 nm 125 1290–1485 1195 1 at 1300 nm Panda 0.11	84821016H mblies available on re 9.5 at 1300 nm 125 1290–1485 1195 1 at 1300 nm Panda 0.11	84821017H equest. Polarisation 9.8 at 1400 nm 125 1380–1560 1290 1 at 1400 nm Panda	84821018E -maintaining 9.8 at 1400 nm 125 1380–1560 1290 1 at 1400 nm Panda	fibers: VIS-IR 10.5 at 1550 nm 125 1450–1620 1370 0.5 at 1550 nm Panda	84821020 10.5 at 1550 nr 125 1450–162 1370 0.5 at 1550 nr Panda	E 84821021K 10.5 n 10.5 at 1550 nm 125 0 1500–1620 1370 1 n at 1550 nm Bow tie	84821022K 7.8 at 1550 nm 80 1500–1620 1370 2 at 1550 nm Bow tie
Order no. Mode field Ø [µm] Jacket Ø [µm] ssion properties elength range [nm] f wavelength [nm] tenuation [dB/km] Fiber type lumerical aperture	165 84821015K Claddings and asse 9.5 at 1300 nm 125 1290–1485 1195 1 at 1300 nm Panda 0.11 Coating – acry	84821016H mblies available on re 9.5 at 1300 nm 125 1290–1485 1195 1 at 1300 nm Panda 0.11	84821017H equest. Polarisation 9.8 at 1400 nm 125 1380–1560 1290 1 at 1400 nm Panda 0.11	84821018E -maintaining 9.8 at 1400 nm 125 1380–1560 1290 1 at 1400 nm Panda 0.11	fibers: VIS-IR 10.5 at 1550 nm 125 1450–1620 1370 0.5 at 1550 nm Panda 0.12	84821020 10.5 at 1550 nr 125 1450–162 1370 0.5 at 1550 nr Panda 0.12	E 84821021K n 10.5 at 1550 nm 125 0 1500–1620 1370 n 1 at 1550 nm Bow tie 0.13	84821022K 7.8 at 1550 nm 80 1500–1620 1370 2 at 1550 nm Bow tie 0.17
Order no. Mode field Ø [µm] Jacket Ø [µm] ssion properties elength range [nm] if wavelength [nm] tenuation [dB/km]	165 84821015K Claddings and asse 9.5 at 1300 nm 125 1290–1485 1195 1 at 1300 nm Panda 0.11	84821016H mblies available on re 9.5 at 1300 nm 125 1290–1485 1195 1 at 1300 nm Panda 0.11	84821017H equest. Polarisation 9.8 at 1400 nm 125 1380–1560 1290 1 at 1400 nm Panda	84821018E -maintaining 9.8 at 1400 nm 125 1380–1560 1290 1 at 1400 nm Panda	fibers: VIS-IR 10.5 at 1550 nm 125 1450–1620 1370 0.5 at 1550 nm Panda	84821020 10.5 at 1550 nr 125 1450–162 1370 0.5 at 1550 nr Panda 0.12 400	E 84821021K n 10.5 at 1550 nm 125 0 1500–1620 1370 n 1 at 1550 nm Bow tie 0.13 245	84821022K 7.8 at 1550 nm 80 1500–1620 1370 2 at 1550 nm Bow tie

Transmission properties Wavelength range [nm]

Cut-off wavelength [nm] Attenuation [dB/km]

Transmission properties Wavelength range [nm]

Cut-off wavelength [nm] Attenuation [dB/km]

Transmission properties Wavelength range [nm] Cut-off wavelength [nm] Attenuation [dB/km]

Measurements on singlemode special fibers

Insertion loss

The measurement is carried out in accordance with IEC 61300-3-4 method C. This attenuation is determined by the wavelength and depends greatly on the launch conditions. Typical attenuation values for standard singlemode fibers 9/125 µm are 0.36 dB/km at 1310 nm and 0.21 dB/km at 1510 nm.

Return loss

The return loss enables characterisation of individual connectors. The return loss describes the ratio of launched light energy to reflected light energy and is dependent on the wavelength. The minimum return loss for singlemode is -35 dB. The measurement is carried out in accordance with IEC 61300-3-6, method 1.

Interferometric measurement

In addition to the usual parameters and checks such as insertion loss, optical checking of the end face for scratches or imperfections, the following measurements are important, although not prescribed, to ensure on the one hand that the assembly process is working correctly and on the other that optimum connector geometries are achieved:

Radius of the ferrule

Too small Too big

- → Ferrule and fiber end face pointed
- → Ferrule and fiber end face flat

- Possible consequence \rightarrow Incomplete contact between the end faces and fibers and as a result possibly
 - → glass-air-glass transitions in individual areas.

Highest point of the ferrule to centre point of the fiber - eccentricity of the polish

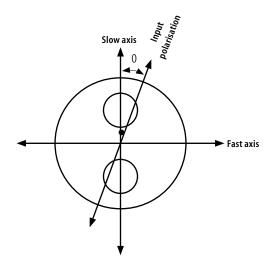
The eccentricity of the polish is the distance between the highest point of the ferrule and the centre of the fiber. This offset is also called the apex and is measured from the fiber axis to the centre. A perfectly ground PC connector exhibits no eccentricity, which means that the highest point of the polish (ferrule) coincides with the centre of the fiber.

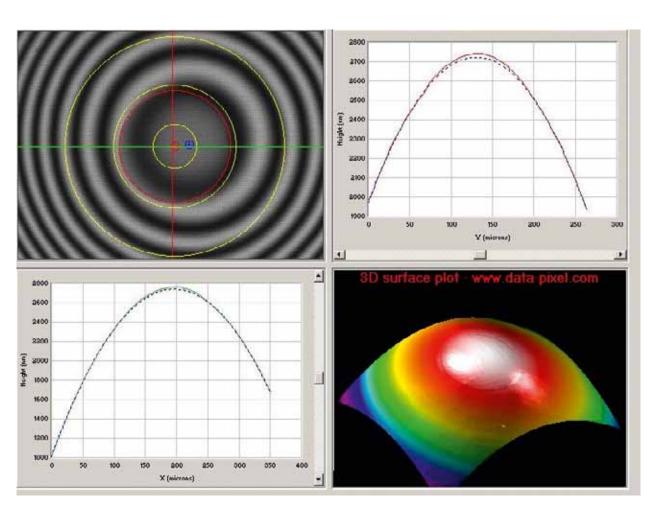
Consequence of an apex that is too big:

- → Axial offset between the coupled fibers
- Glass-air-glass transition no 100% overlapping of the fibers →

Fiber cavity – fiber sitting above or below the ferrule

Fiber sitting above ferrule:


- Damage to the fiber end faces →
- Stress on the fiber impairment of the long-term behaviour →


Fiber sitting below ferrule:

- → No physical contact (PC) between the fibers
- Glass-air-glass transition

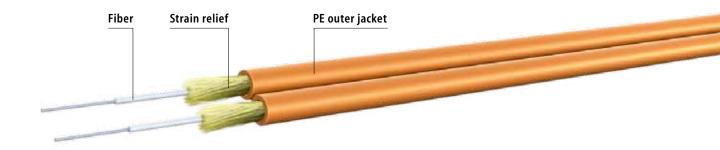
ER (extinction ratio) measurement

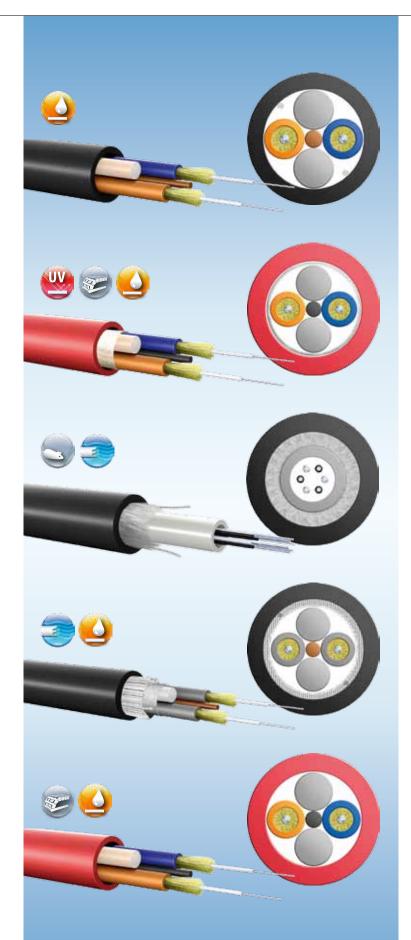
Measuring the quality of the polarised light beam is only important for polarisation-maintaining fibers (PM). This value is specified in the form of the extinction ratio (ER). The most important factor for a high ER value is the alignment of the polarised light relative to the slow axis of the PM fiber. To achieve an ER of >20 dB, for example, the deviation must not exceed 6°.

Measurements on singlemode special fibers: fiber cavity – fiber sitting above or below the ferrule

Cables with singlemode special fibers

I-V (ZN) H 1				
Depends on fiber, on request				
For fixed indoor installation				
500 m and above				


I-V (ZN) Y	
Order no.	Depends on fiber, on request
Application	For indoor installation
Length	500 m and above


A-V (ZN) 11Y				
Order no.	Depends on fiber, on request			
Application	For outdoor installation			
Length	500 m and above			

I-V (ZN) Y 2x1				
Order no.	b. Depends on fiber, on request			
Application	For indoor installation			
Length	500 m and above			

I-V (ZN) H 2x1			
Order no. Depends on fiber, on request			
Application	For indoor installation		
Length	500 m and above		

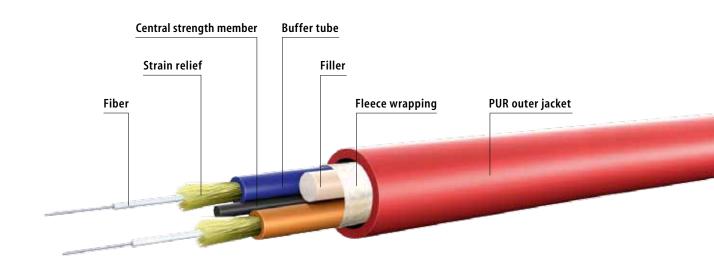
							1
				Step-index singlemode		ion-maintaining fibers	
Specificati for singlen	ons node special fibers	I-V (ZN) H 1	I-V (ZN) Y	-V (ZN) Y A-V (ZN) 11Y I-V (ZN) Y 2x1 I-V (ZN) H 2x1			
Order no.		Depends on fiber, on request					
	Outer jacket material	FRNC	PVC	PUR	PVC	FRNC	
Composition	Buffer tube material	_	_	_	_	_	
Composition	No. of fibers	1	1	1	2	1	
	Outer Ø [mm]	2.2	2.2	3.0	2.2 x 4.5	2.2 × 4.5	
Mechanical	min. bending radius [mm]	Depends on fiber, on request					•
properties	max. pull force [N]	Depends on fiber, on request					
Thermal	Operating temperature [°C]	Depends on fiber, on request					

I-V (ZN) H 2Y			
Order no.	Depends on fiber, on request		
Application For outdoor installation			
Length	500 m and above		

AT-V(ZN)Y 11Y				
Order no.	Depends on fiber, on request			
Application	For indoor and outdoor installation			
Length	500 m and above			

ADQ(ZN) BH			
Order no.	Depends on fiber, on request		
Application	For outdoor installation		
Length	500 m and above		

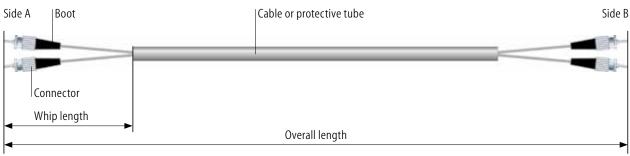
AT-VQ (ZN) HB 2Y				
Order no.	Depends on fiber, on request			
Application	For outdoor installation			
Length	500 m and above			


I-V (ZN) H 11Y			
Order no.	Depends on fiber, on request		
Application	For indoor installation		
Length	500 m and above		

Cables with singlemode special fibers

Step-index singlemode

Singlemoc specificati	le special fiber ons	I-V (ZN) H 2Y	AT-V(ZN)Y 11Y	ADQ(ZN) BH	AT-VQ (ZN) HB 2Y	I-V (ZN) H 11Y		
Order no.			Depends on fiber, on request					
	Outer jacket material	PE	PUR	PE	PUR	FRNC/PE		
Composition	Buffer tube material	FRNC	PVC	FRNC	PVC	PVC		
composition	No. of fibers	2	2	2	2	2		
	Outer Ø [mm]	7.0	7.0	7.0	7.0	7.5		
Mechanical	min. bending radius [mm]		Depends on fiber, on request					
properties	max. pull force [N]	Depends on fiber, on request						
Thermal properties	Operating temperature [°C]	Depends on fiber, on request						



Pre-assembled cables with singlemode special fibers

Singlemode

Description of the structure of pre-assembled singlemode special fibers

- Standard whip lengths 20 ±4 cm
- Overall length tolerances ±2%
- Different variants are available as protective tubes, for example metal corrugated tube with and without additional cladding, silicone tubes, PVC tubes
- With simplex cables, the protective tube can also be joined directly to the connector body

The production of fibers and cables in LEONI's own facilities and their careful assembly under laboratory conditions ensure superior properties and maximum reliability.

In addition to standard products, we offer a range of special product functionalities and customer-specific assembly as well as engineering and consulting.

Service features

- All fiber and cable types (including hybrid cables)
- All connector types
- Every attenuation grade for different customer requirements
- Every length, even for small order sizes
- Delivery possible within 24 hours
- Customer-specific assembly
- Customer-specific cable printing
- Additional selective printing of the cable jacket during the process of cutting to length

Quality assurance

The optical attenuation is defined according to IEC61300-3-4 C for singlemode fibers.

The result is shown on the label.

Connectors for singlemode special fibers

	FCPC connector UV-IR
Order no.	SFCP-SKO-C
Hole	125 µm — 126 µm
Assembly	Crimping/gluing/polishing
Ferrule	Ceramic
Features	Incl. blue or yellow boot
reatures	and dust cap

FC-APC connector UV-IR
SFCA-SKO-C
125 µm – 126 µm
Crimping/gluing/polishing
Ceramic
Incl. green boot
and dust cap

SXST-SKO-C
125 µm – 126 µm
Crimping/gluing/polishing
Ceramic
Incl. yellow boot
and dust cap

SSMA-SKO-C
125 µm – 126 µm
Crimping/gluing/polishing
Ceramic
Incl. black boot
and dust cap

	SC-PC connector UV-IR
Order no.	SXSC-SKO-C
Hole	125 μm – 126 μm
Assembly	Crimping/gluing/polishing
Ferrule	Ceramic
Features	Incl. blue boot and dust cap

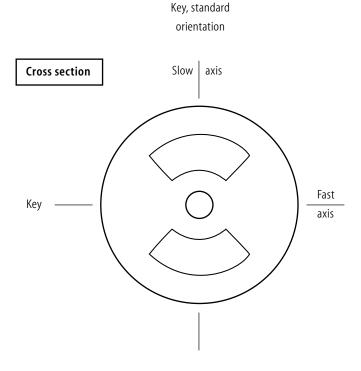
SC-APC connector UV-IR

SSCA-SKO-C
125 µm – 126 µm
Crimping/gluing/polishing
Ceramic
Incl. green boot and dust cap

LC-PC connector UV-IR

SXLC-SKO-C
125 μm – 126 μm
Crimping/gluing/polishing
Ceramic
Incl. blue boot and dust cap

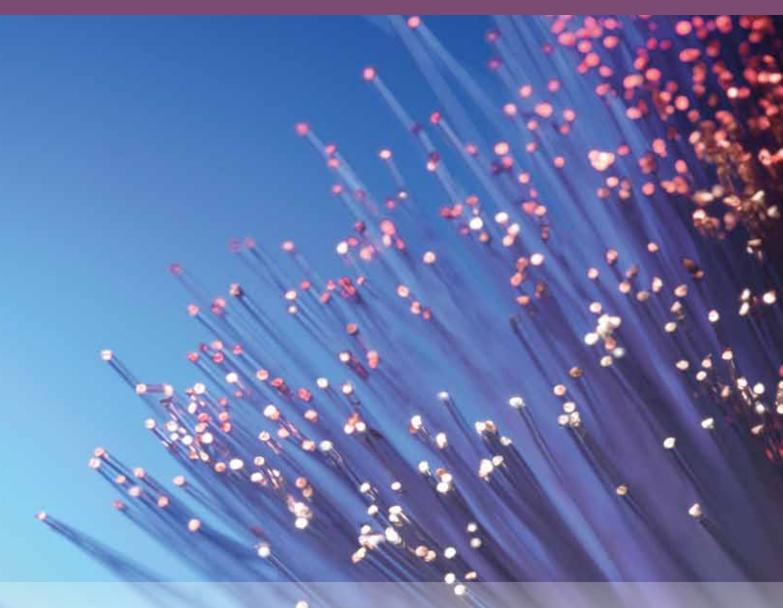
Couplings for singlemode special fibers


168

Special couplings are available on request. Pre-assembled cables with special singlemode fibers

The fact that LEONI produces, assembles and develops its own fibers and cables enables it to achieve superior properties and maximum reliability. In addition to standard products, we offer a range of special product functionalities as well as customer-specific assembly, engineering and consulting.

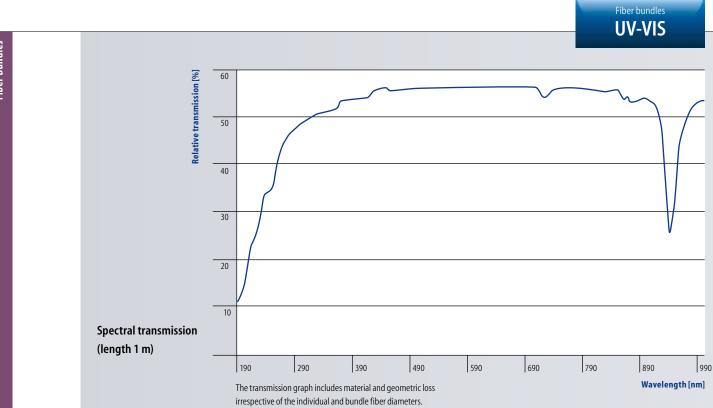
The order numbers for pre-assembled cables are dependent on the fiber and are generated in response to customer requests. Additional information is required for the assembly of PM cables or PM pigtails:


- Alignment of the fiber axis relative to the connector key; a differentiation is made here between
 - orientation parallel to slow axis (standard orientation) and
 - orientation relative to the fast axis
- The extinction rate should also be specified (see the chapter "Measurements on special singlemode fibers")
- The required angular tolerance relative to the axis alignment must also be specified if necessary

Fiber Connect ®	Fiber Tech ®			
			'	169

Fiber Bundles

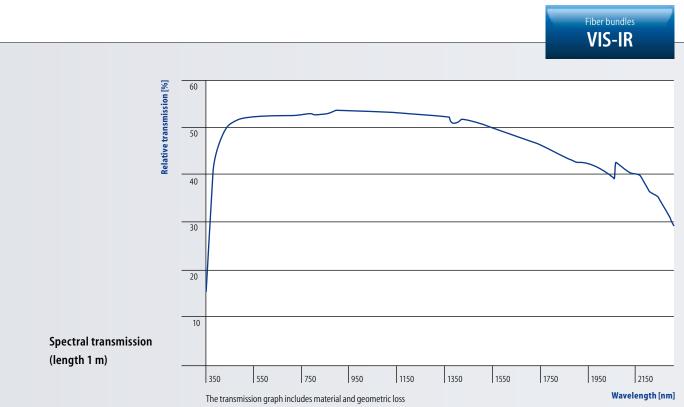
Fused silica glass and optical glass

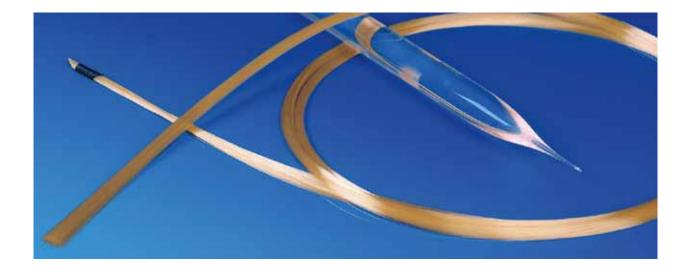

LEONI produces customer-specific fiber bundles made from UV-conductive silica/silica (high-OH), IR-conductive silica/silica (low-OH), plastic or optical glasses with different refractive indices as appropriate to the requirement for the optically conductive material on its own drawing systems. The individual fibers are generally between 30 µm and 150 µm in diameter, but can be drawn to customer-specific diameters on request. The lengths of the fiber bundles vary between 4, 5, 10 and 20 m. The bundle diameters are individually produced according to the customer's wishes.

The fiber bundles are available specifically for endoscopic applications in different radiation angles of 67° (LB type), 83° (LA type), 90° (LW2 type) and \geq 100° (L120.3 type) for optimum illumination. Our range also includes UV-resistant (solarisation-stable) silica/silica fibers. In addition to endoscopy, they are also used in spectrometry, lighting and sensor technology.

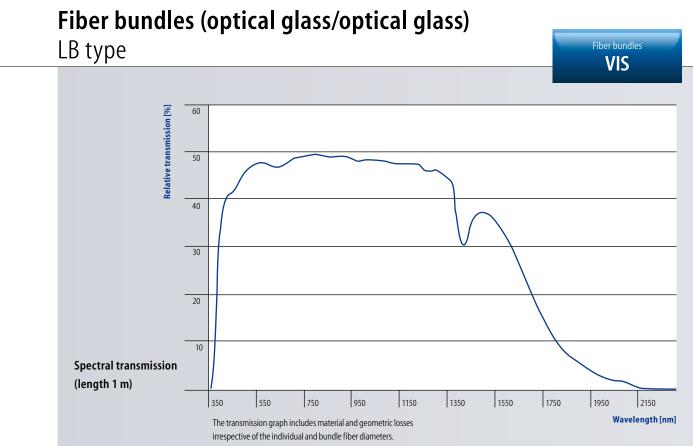
The individual fibers are coated with glass finish (autoclavable up to 150°C) or polyimide (can be used up to 300°C) as appropriate to the assembly and temperature requirements. The thickness of the coatings is $\leq 1 \mu$ m. They have a protective function and also simplify the further processing. In addition to the standard lengths and diameters, the fiber bundles can also be supplied as preassembled optical waveguides with polished end faces.

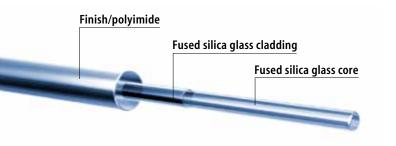
Fiber Bundles	170
Fiber bundles (silica/silica)	172
Fiber bundles (optical glass/optical glass)	174
LB type	174
LA type	175
LW2 type	176
L120.3 type	177
Assembly of fiber optic bundles	178


Fiber bundles (silica/silica)



	Pr	operties of indiv	idual fibers UV-	VIS
Fiber diameter (incl. cladding and coating) [μ m]	30	50	80	105
CCDR		1.	.1	
Acceptance angle		25	5°	
Numerical aperture		0.22 ± 0.02 (0.1 o	r 0.26 on request)	
Temperature resistance with finish [°C]		200)°C	
Temperature resistance with polyimide [°C]		300)°C	
		Properties of	fiber bundles	
Bundle Ø [mm]		0.3 – 6 (other dime	ensions on request	t)
– Bending radius [mm] –		40 – 60 depend	ing on bundle Ø	


172



irrespective of the individual and bundle fiber diameters.

		Properties of	of individual	fibers VIS-I	3
Fiber diameter (incl. cladding and coating) $\left[\mu m\right]$	30	50	70	80	105
CCDR			1.2		
Acceptance angle			25°		
Numerical aperture		0.22 ± 0.0)2 (0.1 or 0.36	on request)	
Temperature resistance with finish [°C]			200°C		
Temperature resistance with polyimide [°C]			300°C		
		Proper	ties of fiber	bundles	
Bundle Ø [mm]		0.3 – 6 (otł	er dimensions	s on request)	
Bending radius [mm]		40 - 60	depending on	bundle Ø	

70
70
/0

Fiber diameter	r (incl. cladding and coatin	g) [µm]
----------------	------------------------------	---------

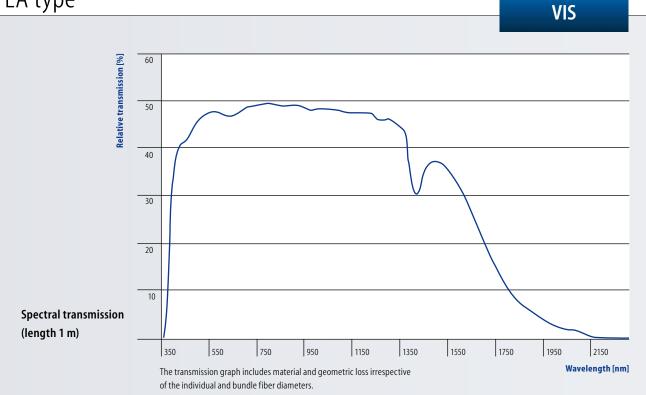
CC

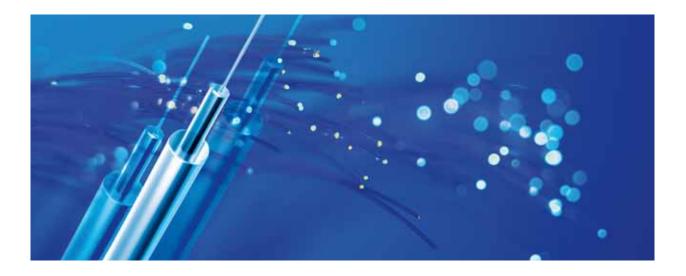
Acceptance angle

Numerical aperture

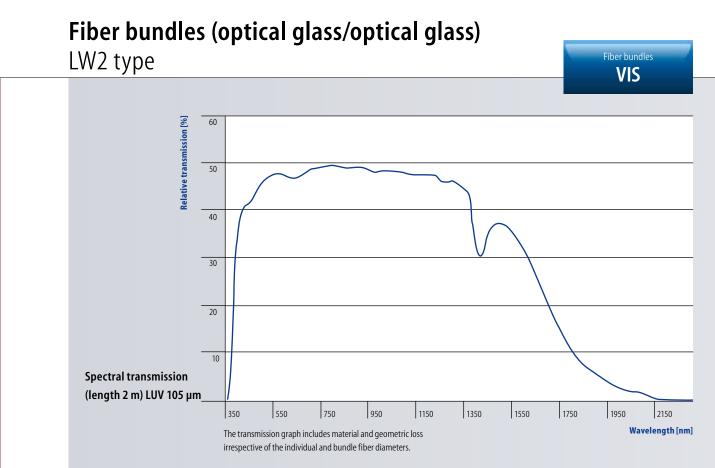
Temperature resistance with finish [°C]

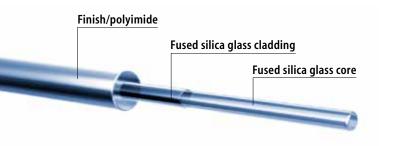
Temperature resistance with polyimide [°C


Bundle Ø [mm]


Bending radius [mm

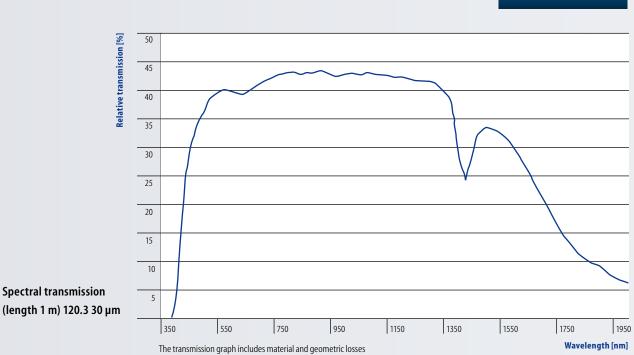
Fiber**Tech**[®] Fiber


Fiber bundles


Fiber bundles (optical glass/optical glass) LA type

	Properties of individual fibers LA1 type			
Fiber diameter (incl. cladding and coating) $\left[\mu m\right]$	30	50	60	70
CCDR	1.1			
Acceptance angle	83°			
Numerical aperture	0.66			
Temperature resistance with finish [°C]		200	Э°С	
Temperature resistance with polyimide [°C]		300)°C	
		Properties of	fiber bundles	
Bundle Ø [mm]	0.3 – 6 (other dimensions on request)			
Bending radius [mm]	40 – 60 depending on bundle Ø			

	Properties of individual fibers LW2 type			
Fiber diameter (incl. cladding and coating) $\left[\mu m\right]$	30	50	60	70
CCDR	1.1			
Acceptance angle	93°			
Numerical aperture	0.72			
Temperature resistance with finish [°C]	200°C			
Temperature resistance with polyimide [°C]	300°C			
	Properties of fiber bundles			
Bundle Ø [mm]	0.3 - 6 (other dimensions on request)			
Bending radius [mm]	40 – 60 depending on bundle Ø			


	Properties of individual fibers LW2 type							
g) [µm]	30	50	60	70				
CCDR		1.1						
e angle		93	°					
perture		0.7	72					
ish [°C]		200)°C					
de [°C]		300)°C					
		Properties of	fiber bundles					
ð [mm]		0.3 – 6 (other dime	nsions on request)				

Fiber Bundles

Fiber bundles

VIS

Fiber bundles (optical glass/optical glass) L120.3 type

irrespective of the individual and bundle fiber diameters.

	Properties of individual fibers L120.3-VIS					
Fiber diameter (incl. cladding and coating) [μ m]	30	50	70			
CCDR		1.1				
Acceptance angle		≥100°				
Numerical aperture		0.87				
Temperature resistance with finish [°C]	200°C					
Temperature resistance with polyimide [°C]	300°C					
	Pre	operties of fiber bun	dles			
Bundle Ø [mm] $0.3 - 6$ (other dimensions on request)						
Bending radius [mm]	40	– 60 depending on bun	dle Ø			

Assembly of fiber optic bundles

LEONI assembles optical fibers from the suitable base materials (optical glass or silica) to guarantee the optimum transmission of the UV light through the visible range to the IR range.

Info

Assembly examples can be found in the chapter "Optical Special Components".

Advantages

- The fibers and cables used come from our own production facilities, which means you can be confident of always getting the most economical product.
- Ultra modern lapping, polishing and cleaving techniques guarantee maximum transmission properties.
- These transmission properties can be further optimised in some applications through the use of anti-reflective surfaces.
- Product diameters and lengths are individually adapted during assembly.
- A selection of protective tube types are presented in the chapter on tubes.
- The assembled fiber bundles can cover a temperature range from −60°C to +300°C as appropriate to the application.
- Customer-specific connector selection:
 SMA, SZ, ST connectors or tailor-made ferrules.

Fiber Connect ®	Fiber Tech ®	Fiber Switch ®	
			179

Laser Probes

for pulsed and high-performance CW lasers for medical applications

Over 22 years of experience, innovation and high quality as well as the cost effectiveness of our products enable us to offer a wide selection of medical probes.

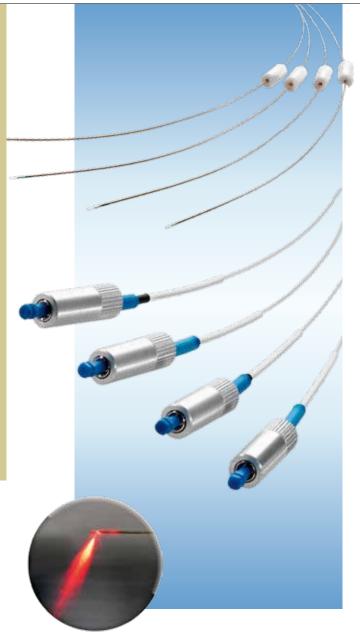
Applications

- Arthroscopy
- General surgery
- Dentistry
- Dermatology
- Gastroenterology
- Gynaecology
- Endovascular applications
- Laser lipolysis
- Lithotripsy
- Ophthalmology
- Urology

Laser Probes	180
Laser probes	182
SideFiring fibers	182
Laser probes for diode, Nd:YAG, KTP and holmium lasers (BareFiber)	183
Laser probes with HPCS fibers (BareFiber)	184
Ophthalmological laser probes	185
Laser probes with polyimide fibers for dental medicine	186
Gas or liquid-cooled optical fibers	187
Handpieces for laser probes	188
Handpieces for laser probes	189
Handpieces for dermatology and dentistry	189
Accessories	189
Type designations for laser probes	190

Note

Versions with customer-specific adaptations such as different colours, diameters and lengths, for example, are possible for all products and designs.



Services

- Development of a customer-oriented product design
- Fibers for different wavelengths with different numerical apertures (NA) as well as particularly low OH content are available
- Manufacturing of medical probes for the laser energy transmission of argon, Nd:YAG, excimer, holmium, KTP and diode lasers
- Series production of surgical, ophthalmological, urological, dental and endovascular probes with biocompatible materials
- Manufacturing of medical fibers for laser energy transmission primarily in the wavelength range from 266 nm to 2200 nm
- ISO 9001, ISO 13485 and FDA certified
- CE marking for medical devices

Laser probes

182



SideFiring fibers

Fiber optic cable with lateral radiation and excellent beam quality. The SideFiring fibers with their special design are characterised by a long service life and are tested and well-regarded in clinics around the world.

Certification	All products are EN ISO 13485 and FDA certified and bear the CE marking.			
Properties	 Suitable for UV 532 nm and IR up to 2200 nm Capillary Ø 1750 or 2050 µm Handling aid and capillaries with beam direction marking High-power F-SMA905 connector (free-standing) Max. output up to 250 W CW Adapters available Optimisation for customer-specific laser devices possible 			
Recommended for the indications	 BPH (benign prostatic hyperplasia) Bladder tumours Urethral stenoses Vaporisation of urethral warts Meatotomy etc. 			

Wavelength	Core Ø [μm]	Capillary Ø [µm]	Length [m]	Colour	Type designation
UV	600	1750	3	Transparent	FT UV600/720HCN-3/SL-SF-1750
UV	600	2050	3	Transparent	FT UV600/720HCN-3/SL-SF-2050
IR	600	1750	3	Transparent	FT IR600/720HCN-3/SL-SF-1750
IR	600	2050	3	Transparent	FT IR600/720HCN-3/SL-SF-2050

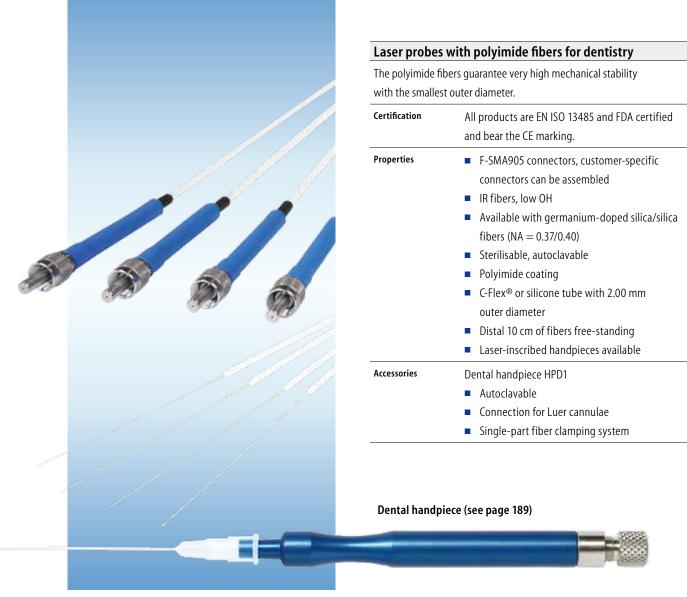
Туре	Core Ø [μm]	Fiber Ø [µm]	Length [m]	Colour	NA	Type designation
200	272	600	3	Blue	0.22	FT IR272/300ST-3/SL-F
365	365	700	3	Blue	0.22	FT IR 365/400ST-3/SL-F
550	550	900	3	Blue	0.22	FT IR 550/605ST-3/SL-F
1000	1000	1500	3	Blue	0.22	FT IR1000/1100ST-3/SL-F
200 1.1	200	500	3	Blue	0.22	FT IR200/220ST-3/SL-F
200 1.2	200	520	3	Blue	0.22	FT IR 200/240 ST-3/SL-F
300 1.1	300	600	3	Blue	0.22	FT IR 300/330 ST-3/SL-F
400 1.1	400	750	3	Blue	0.22	FT IR 400/440 ST-3/SL-F
500 1.1	500	850	3	Blue	0.22	FT IR 500/550 ST-3/SL-F
600 1.1	600	1000	3	Blue	0.22	FT IR 600/660 ST-3/SL-F

Laser probes with HPCS fibers (BareFiber)

Fiber optic cable with increased NA (NA = 0.37) and excellent beam quality. A disposable product – high quality and economical.

Certification	All products are EN ISO 13485 and FDA certified and bear the CE marking.
Properties	 EtO-sterilised, double packed (pouch in pouch) Male/female LuerLock for catheter connection available (with L in the product code) F-SMA extension sleeve available in various colours, laser inscription possible IR fibers, low OH F-SMA905 connectors, customer-specific connectors can be assembled Cost-efficient Various accessories available (strippers, cleavers, etc.)
Recommended for the indications	 Varices Spider veins (varicose veins) Laser lipolysis Coagulation, ablation Contact cutting and interstitial coagulation

Туре	Core Ø [µm]	Fiber Ø [µm]	Length [m]	Colour	NA	Type designation
200	200	500	3	Transparent	0.37	FT IR200T-3/SM-F
300	300	650	3	Transparent	0.37	FT IR300T-3/SM-F
400	400	750	3	Transparent	0.37	FT IR400T-3/SM-F
600	600	980 / 750	3	Transparent	0.37	FT IR600T-3/SM-F
800	800	1100	3	Transparent	0.37	FT IR800T-3/SM-F
200L	200	500	3	Transparent	0.37	FT IR200T-3/SM-F-L
300L	300	650	3	Transparent	0.37	FT IR300T-3/SM-F-L
400L	400	750	3	Transparent	0.37	FT IR400T-3/SM-F-L
600L	600	980 / 750	3	Transparent	0.37	FT IR600T-3/SM-F-L
800L	800	1100	3	Transparent	0.37	FT IR800T-3/SM-F-L


Fiber**Con**i

| 185

•	haracterised by their high-quality, sign and have an anodised metal handpiece.
Certification	All products are EN ISO 13485 and FDA certified and bear the CE marking.
Properties	 Excellent mechanical and optical quality Fibers centric in the cannula, minimal adhesive gap EtO-sterilised, double packed (pouch in pouch) IR fibers, low OH Many connector types available (F-SMA, FC/PC, ceramic ferrules, etc.) F-SMA extension sleeve available in various colours Laser inscription possible (handpiece and/or extension sleeve) Endoprobes available in 20, 23, 25 gauge Cycloprobe with ball made from fiber material, Ø 900 µm Retinopexy probe with laterally decoupling laser beam Many bending radii and bending shapes available

Туре	Core Ø [µm]	Length [m]	Colour	NA	Type designation
Endo 20 S	210	2.5	White/blue	0.22	FT IR210/220A-2.5/SM-ES20
Endo 20 C	210	2.5	White/blue	0.22	FT IR210/220A-2.5/SM-EC20
Endo 23 S	210	2.5	White/blue	0.22	FT IR210/220A-2.5/SM-ES23
Endo 23 C	210	2.5	White/blue	0.22	FT IR210/220A-2.5/SM-EC23
Endo 25 S	210	2.5	White/blue	0.22	FT IR210/220A-2.5/SM-ES25
Endo 25 C	210	2.5	White/blue	0.22	FT IR210/220A-2.5/SM-EC25
Cyclo 900	600	2.5	White/blue	0.22	FT IR600/900AN-2.5/SM-CS
Retinopexi	600	2.5	White/blue	0.22	FT IR600/630A-2.5/SM-ER
Illuminated	210	2.5	White/blue	0.22	FT IR210/220A-2.5/SM-EIS20

Туре	Core Ø [µm]	Fiber Ø / tube Ø [µm / mm]	Length [m]	Colour	NA	Type designation
200	200	270 / 2	3	Opaque	0.22	FT IR200/240PI-3/SM-F-C2
320	320	415 / 2	3	Opaque	0.22	FT IR320/385PI-3/SM-F-C2
400	400	470 / 2	3	Opaque	0.22	FT IR400/440PI-3/SM-F-C2
600	600	690 / 2	3	Opaque	0.22	FT IR600/660PI-3/SM-F-C2
Dental handpiece				Blue		HPD1

Fiber**Connect**®

| 187

das or ilquiu	-cooled optical fibers
Especially intere	sting for the gastroenterological discipline.
Certification	All products are EN ISO 13485 and FDA certified
	and bear the CE marking.
Properties	 F-SMA905 connectors, customer-specific
	connectors can be assembled
	IR fibers, low OH, NA = 0.37
	 EtO-sterilised, double packed (pouch in pouch
	 Luer adapters for rinsing medium
	 F-SMA extension sleeve available in various colour
	Laser inscription possible
	Also available: silica/silica fibers, NA = 0.22

Туре	Core Ø [µm]	Outer Ø [µm]	Length [m]	Colour	NA	Type designation
400/1.8	400	1.8 mm	3 m	Transparent	0.37	FT IR400N-3/SM-GLC-1800
600/2.1	600	2.1 mm	3 m	Transparent	0.37	FT IR600N-3/SM-GLC-2100

Handpieces for laser probes

188

Handpieces for laser probes

Properties

Surgical handpieces with cannulae made from stainless steel.

- Autoclavable
 - Single-part fiber clamping system
 - Many needle shapes/lengths/diameters available
 - Handpieces for ENT
 - Handpieces with variable spot diameter (1x to 3x fiber core diameter)
 - Dermatological handpieces with spacers (30 and 50 mm focal distance)
 - Handpieces with connected assembled fiber in the protective tube
 - Bleaching handpieces

Surgical handpieces	Length [mm]	Type designation		
		for core Ø 400 μm	for core Ø 600 µm	
	20	HPS1-20-400	HPS1-20-600	
Short curved (45°)	40	HPS1-40-400	HPS1-40-600	
(((60	HPS1-60-400	HPS1-60-600	
	60	HPS2-60-400	HPS2-60-600	
Offeat (ENIT)	80	HPS2-80-400	HPS2-80-600	
Offset (ENT)	100	HPS2-100-400	HPS2-100-600	
	120	HPS2-120-400	HPS2-120-600	
	50	HPS3-50-400	HPS3-50-600	
Coursed	75	HPS3-75-400	HPS3-75-600	
Curved	100	HPS3-100-400	HPS3-100-600	
	125	HPS3-125-400	HPS3-125-600	
	20	HPS4-20-400	HPS4-20-600	
	40	HPS4-40-400	HPS4-40-600	
	60	HPS4-60-400	HPS4-60-600	
	80	HPS4-80-400	HPS4-80-600	
Ctusialat	100	HPS4-100-400	HPS4-100-600	
Straight	120	HPS4-120-400	HPS4-120-600	
	140	HPS4-140-400	HPS4-140-600	
	160	HPS4-160-400	HPS4-160-600	
	180	HPS4-180-400	HPS4-180-600	
	200	HPS4-200-400	HPS4-200-600	

Fiber**Connect**°

Focusing handpiece, 30 mm and 50 mm Focusing handpiece, manually adjustable

Bleaching handpiece

Handpieces for dermatology and dentistry

Designation	Product code
Bleaching handpiece with 600 μm fibers, length 3 m and SMA905 connector	HPD-B-600
Handpiece with clamping device and Luer tip	HPD-1
Focusing handpiece, 30 mm, with 600 µm fibers, length 3 m and SMA905 connector	HPD-D30-600
Focusing handpiece, 50 mm, with 600 µm fibers, length 3 m and SMA905 connector	HPD-D50-600

Dental handpiece for Luer cannula (cannula shown not included)

Accessories

Designation	Product code
Ceramic scissors – cleave tool	CS1
Fiber stripper 0.12 to 0.40 mm	FS1
Fiber stripper 0.30 to 1.00 mm	FS2
SMA-Fiber checktool	FC1

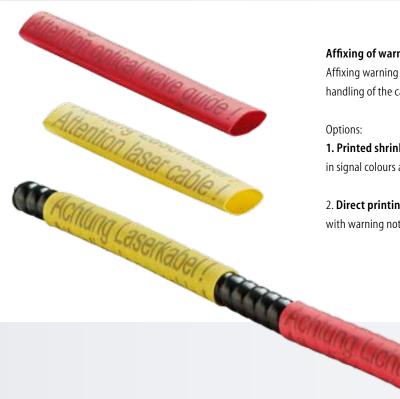
Type designations for laser probes

Manufacturer	
FiberTech GmbH as per MDA (German Medical Devices Act)	FT
Fiber type	
High OH	UV
Low OH	IR
Low OH NA = 0.38/0.40	GE
Core diameter	E.g. 600
Cladding diameter	E.g. 660
Coating	
Acrylate	A
Silicone	S
Polyimide	PI
Hard clad	HC
Buffer/jacket	
Teflon	т
Nylon®	N
Product length [m]	E.g. 3.5
Connector type	
F-SMA905	s
FC/PC	F
DIN	F
BST	В
Special connector	X
Connector design	
Standard	м
High power	L
Programmable	P
Distal tip	
Flat	F
Tapered	F T
Ball	B
Orb	0
Spherical	s
Side fire	SF
Gas/liquid-cooled	GLC
Special designs	5 63
Capillary	E.g. C2
Protective tube	

190

Fiber Connect ®	Fiber Tech ®			
			-	191

Tubes


Tubes are used to protect various optical fiber arrangements against damage from longitudinal and lateral forces as well as a wide range of environmental influences. Maximum delivery length:

Up to 200 m, but dependent on optical fiber diameter and type, tube diameter and type as well as cable composition

- Minimum permissible bending radius: Dependent on optical fiber used; special tubes with limited bending can be used to protect the fibers
- Mechanical properties: In assessment table
- Protection classes: IP classes
- Marking:

Tubes can be printed with customer-specific marking

Tubes	194
PVC tube	194
PTFE tube	194
PEEK tube	195
Metal tube (single-interlocked metal profile)	195
Metal tube (double-interlocked metal profile, Agraff)	196
Metal/plastic tube (single-interlocked metal profile)	196
Metal/plastic tube (double-interlocked metal profile, Agraff)	197
Metal/silicone tube	198
Fabric tube	199
Properties of selected tube materials	200
Plastic tubes	201
Plastic tubes/low-loss circular waveguides for cable dividers	201

Affixing of warning and safety notices

Affixing warning markings is very helpful in ensuring proper handling of the cables during installation and maintenance work.

Options:

1. Printed shrink-fit tubes in signal colours and variable intervals and lengths

2. Direct printing of the tubes with warning notices

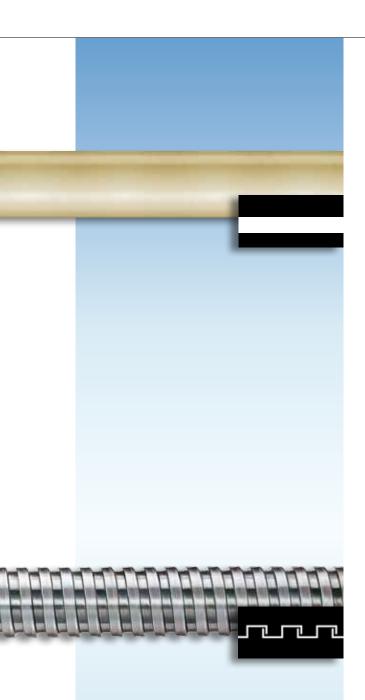
Tubes

PVC tube				
Cost-effective construction for lightweight indoor and outdoor cables				
Protection class	Protection class IP68			
Operating temperate	ure -25°C to +80°C			
Colours	black / blue / red			
Composition	Smooth tube			
Material	PVC			
Properties	Bondability: good / resistance to lateral compression: poor			

Order no.	Inner Ø approx.	Outer Ø approx.	Weight ±10%	Minimum permissible bending radius*
	mm	mm	kg/m	mm
Z10097 Blue	1.2	3	0.009	15
Z10098 Black	1.2	3	0.009	15
Z10025 Blue	2	4	0.013	25
Z10007 Blue	2	5.5	0.027	30
Z10008 Red	2.7	5	0.025	30
Z10101 Black	2	2.7	0.004	15

* Applies to the tube only and is influenced by the fiber and cable inner composition used. Other diameters on request.

PTFE tube


For vacuum applications, in the medium temperature range,

good gliding quality (cable inner constructions)
--

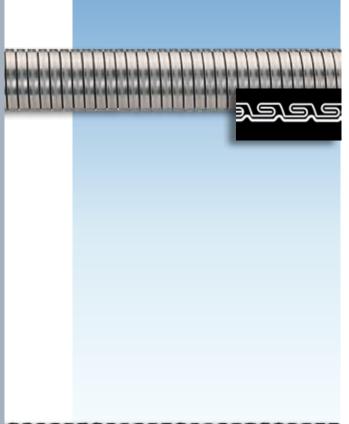
Protection class	IP68
Operating temperature	e -60°C to +260°C
Colours	transparent / black / blue / violet / red / orange /
	yellow / green
Composition	Smooth tube
Material	PTFE
Properties	Bondability: none / resistance to lateral compression:
	medium to good

Order no.	Inner Ø approx.	Outer Ø approx.	Weight ±10%	Minimum permissible bending radius*
	mm	mm	kg/m	mm
Z10027 Transparent	1.8	2.1	0.002	15
Z10074 Transparent	1.5	2.5	0.007	15
Z10081 Yellow	1.5	2.5	0.007	15
Z10075 Green	1.5	2.5	0.007	15
Z10082 Orange	1.5	2.5	0.007	15
Z10083 Violet	1.5	2.5	0.007	15
Z20429 Black	1.7	2.5	0.006	15
Z10024 Transparent	2	4	0.016	30

* Applies to the tube only and is influenced by the fiber and cable inner composition used. Other diameters on request.

PEEK tube	
Vacuum applicatio	ons, wide temperature range, good gliding quality
Protection class	IP68
Operating temperatu	re -40°C to +220°C
Colours	Beige
Composition	Smooth tube
Material	PEEK
Properties	Bondability: good / resistance to lateral compression:
	medium to good

Order no.	Inner Ø approx.	OuterØ approx.	Weight ±10%	Minimum permissible bending radius*
	mm	mm	kg/m	mm
Z20809	1.01	1.59	0.002	30
Z20433	1.59	3.17	0.008	50


* Applies to the tube only and is influenced by the fiber and cable inner composition used. Other diameters on request.

Metal tube (single-interlocked metal profile)				
Tube for moderatel	Tube for moderately heavy cables with very wide temperature operating range			
Protection class	IP40			
Operating temperature	Up to +600°C			
Composition	Metal convoluted tube with single-interlocked profile			
Material	Stainless steel			
Properties	Bondability: good / resistance to lateral compression:			
	good			

Order no.	Inner Ø approx.	OuterØ approx.	Weight ±10%	Minimum permissible bending radius*
	mm	mm	kg/m	mm
Z20436	1.5	2.9	0.012	15
Z10102	1.8	2.9	0.015	15
Z10005	3	4.7	0.027	15
Z10103	3.5	5.0	0.034	20
Z10703	4	5.8	0.037	20
Z20453	5	6.9	0.044	20
Z10104	6	8	0.06	25
Z10105	8	10	0.075	30

* Applies to the tube only and is influenced by the fiber and cable inner composition used. Other diameters on request.

195

Metal tube (double-interlocked metal profile, Agraff)

Tube for moderately heavy cables with very wide temperature operating range and improved tensile and torsional strength

Protection class	IP40
Operating temperature	Up to +600°C
Composition	Metal convoluted tube with double-interlocked profile
Material	Stainless steel
Properties	Bondability: good / resistance to lateral compression:
	very good

Order no.	Inner Ø approx.	Outer Ø approx.	Weight ±10%	Minimum permissible bending radius*
	mm	mm	kg/m	mm
Z20436	1.5	2.9	0.012	15
Z10102	1.8	2.9	0.015	15
Z10005	3	4.7	0.027	15
Z10103	3.5	5.0	0.034	20

* Applies to the tube only and is influenced by the fiber and cable inner composition used. Other diameters on request.

Metal/p	lastic tu	ibe (sing	le-interlo	cked metal p	rofile)	
Leakproof tube for moderately heavy indoor and outdoor cables						
Protection	class	IP68				
Colours Black (other colours on request)					t)	
Compositio	on	Metal co	onvoluted	tube with si	ngle-interlo	cked
		profile,	covered w	vith plastic tu	be	
Properties		Bondabi	lity: good	/ resistance to	o lateral com	pression:
		good				
Order no.	Inner Ø approx.	Outer Ø approx.	Weight ±10%	Minimum permissible bending radius*	Material	Operating tempera- ture
	mm	mm	kg/m	mm		°C
Z10107	4	7	0.05	17		
Z20457	4.8	8	0.06	20		
Z10108	6	9	0.08	25	Galva- nised	–25 to
Z10109	8	10.2	0.085	40	- iron/PVC	+80
Z10110	10	14	0.138	40		
Z10111	12	16	0.161	44		
Z20604	7	10	0.085	40	Galvanised iron/ polyamide	-50 to +115

* Applies to the tube only and is influenced by the fiber and cable inner composition used. Other diameters on request.

Metal/plastic tube (double-interlocked metal profile, Agraff)				
Leakproof tube for moderately heavy indoor and outdoor cables				
sile and torsional strength				
IP68				
See table (other colours on request)				
Metal convoluted tube with double-interlocked				
profile, covered with plastic tube				
Bondability: good / resistance to lateral compression:				
very good				

Order no.	Inner Ø approx.	OuterØ approx.	Weight ±10%	Minimum permissible bending radius*	Material	Operating tempera- ture
	mm	mm	kg/m	mm		°C
Z20846	4.5	8.4	0.11	40	Brass/ black silicone	-60 to
Z20865	6	9.6	0.115	40	Stainless steel/black silicone	+260
Z20610	7	10	0.13	44	Galvanised iron/blue PUR	-40 to +80

* Applies to the tube only and is influenced by the fiber and cable inner composition used. Other diameters on request.

| 197

Metal/silicone tube					
As a protective tube for fiber bundles in medical and industrial technology					
Protection class	IP68				
Operating temperature -60° C to $+260^{\circ}$ C					
Colours	Grey / black				
Composition	Wound flattened wire coil with braid made				
	from glass fiber yarn and silicone/rubber cladding				
Material	Stainless steel				
Properties	Bondability: good / resistance to lateral				
	compression: good				
	Resistant to tensile forces / flame-resistant				
	Good chemical resistance / halogen-free				

Order no.	Inner Ø approx.	Outer Ø approx.	Weight ±10%	Minimum permissible bending radius*
	mm	mm	kg/m	mm
Z10093	1.0	3.0	0.016	11
Z10092	1.5	4.0	0.02	13
Z20154	2.5	4.4	0.028	14
Z10112	3.0	5.3	0.044	20
Z10113	3.5	5.8	0.05	20
Z20448	4	6.5	0.058	25
Z20482	5	7.5	0.079	25
Z20599	7	10	0.141	45
Z10114	8	11.6	0.191	45
Z10115	10	13.6	0.241	75
Z10116	12	16.2	0.347	75
Z10238**	6	10	0.195	55
X A 15 1 1 1 1 1				

* Applies to the tube only and is influenced by the fiber and cable inner composition used. ** Extra strong design. Other diameters on request.

Fabric tube				
As a protective tul	be for fiber bun	dles in me	dical and industria	al technology
Protection class	IP30			
Composition	Braided fib	er materia	ls	
Properties	Bondability	: good / re	esistance to latera	I
	compressio	n: none		
Order no.	Diameter approx.	Weight ±10%	Material	Operating temperature
	mm	kg/m		°C
Z10018	1.5	0.001	Glass fiber yarn	
Z10120	3	0.002	Glass fiber yarn	llip to 1 400
Z10019	4	0.004	Glass fiber yarn	Up to +400
Z10122	8	0.003	Glass fiber yarn	
Z10123	12.5	0.009	Aramid	Up to +150
Z10061	20	0.010	Polyamide	Up to +115
Other diameters on r	equest.			

Other diameters on request.

| 199

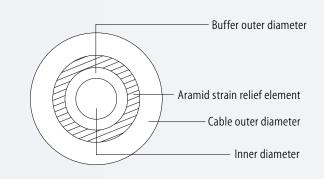
Properties of selected tube materials

Material properties	PE	PA	PVC
Resistance to aging	+	+	+
Halogen-free	+	+	
Non-flammability	/●	-	+
Elasticity	-	+	•
Abrasion resistance	+/-	+	+
Low smoke gas generation	/•	+	-
Low emission of corrosive gases	+/●	++	
Low smoke gas toxicity	+/●	++	
No toxicological risk	+/●	++	-

TPE-O (FRNC)	TPE-U (PUR)	PVC	PE
+	+	+	+
+	+		+
+	+	+	/●
-	+	•	-
-	++	+	+/-
++	•	-	/•
++	•		+/●
++	•		+/●
++	•	-	+/●

General resistance to	PE	PA	PVC
UV light	1)	+	+
Water absorption	+		+
Gas diffusion	•		
Fuels	+/-	+	+
Petroleum/lubricants	+	+	•
Organic solvents	+ 4)	+ 5)	-
Alcohol	+	+	+
Oxidants	-	-	+
Acids	++	-	+
Alkaline solutions	+	+	+
Saline solutions	+	-	+

TPE-O (FRNC)	TPE-U (PUR)	PVC	PE
1)	1)	1)	1)
-	-	+	+
-	2)		•
-	+	+/-	+
-	++	•	+
-	+ 3)	-	+ 4)
-	-	+	+
-	-	+	-
+		+	++
+		+	+
	-	+	+


++ excellent + aood

- + good ● depend
 - depends on recipe weak
- weakinadequate
- UV resistance can be increased by adding black colour pigments or UV stabilisers
- 2) Permeation depends on type of gas, e.g. Ar, CH₄, N₂, O₂ low gas permeation, CO₂, H₂, He higher gas permeation
- 3) Low swelling in saturated hydrocarbons; significant swelling in aromatic hydrocarbons, aliphatic esters cause swelling, highly polar organic solvents dissolve under the effect of extreme swelling
- Swelling in aliphatic and aromatic hydrocarbons and in chlorinated hydrocarbons
- Not resistant to chlorinated hydrocarbons, resistant to hydrocarbons and aliphatic and aromatic solvents

201

Loose tubes/cable for cable dividers

Loose tubes/cable are designed for the direct assembly of multifiber loose tube cables with divider elements for mechanical protection of the fibers.

Assembly	Direct connector assembly
Buffer tube material	FRNC
Min. delivery quantity	2000 m
Makeup	Disposable drum

Designation	I-V(ZN)H 0 – loose cable 0,5/0,9/2,1	I-V(ZN)H 0 – loose cable 0,5/0,9/2,1	l I-V(ZN)H 0 - loose cable 0,8/1,1/2,2	I-V(ZN)H 0 – loose cable 0,8/1,1/2,2
Order number	84950139X111	84950139X222	84950220X000	84950220X222
Colour	Rape yellow	Pastel orange	Jet black	Pastel orange
RAL	1021	2003	9005	2003
Cable outer diameter	2.1 mm	2.1 mm	2.2 mm	2.2 mm
Buffer outer diameter	0.9 mm	0.9 mm	1.1 mm	1.1 mm
Inner diameter	0.5 mm	0.5 mm	0.8 mm	0.8 mm
Max. tensile force	300 N	300 N	300 N	300 N
Cable weight	Approx. 4.5 kg/km	Approx. 4.5 kg/km	Approx. 6.6 kg/km	Approx. 6.6 kg/km
Ambient temperature in operation	-5°C to +70°C	-5°C to +70°C	-5°C to +70°C	-5°C to +70°C

Designation	I-V(ZN)H 0 – loose cable 0,5/0,9/2,1	I-V(ZN)H 0 – loose cable 0,5/0,9/2,1	I-V(ZN)H 0 – loose cable 0,5/0,9/2,8	I-V(ZN)H 0 – loose cable 0,5/0,9/2,8
Order number	84950139X666ZIF01	84950139X666ZIF12	84950132X222	84950132X666
-	Digit 1	Digit 12		
Colour	Yellow green	Yellow green	Pastel orange	Yellow green
RAL	6018	6018	2003	6018
Cable outer diameter	2.1 mm	2.1 mm	2.8 mm	2.8 mm
Buffer outer diameter	0.9 mm	0.9 mm	0.9 mm	0.9 mm
Inner diameter	0.5 mm	0.5 mm	0.5 mm	0.5 mm
Max. tensile force	300 N	300 N	300 N	300 N
Cable weight	Approx. 4.5 kg/km	Approx. 4.5 kg/km	Approx. 4.5 kg/km	Approx. 4.5 kg/km
Ambient temperature in operation	-5°C to +70°C	-5°C to +70°C	-5°C to +70°C	-5°C to +70°C
	-5°C to +70°C	-5°C to +70°C	-5°C to +70°C	-5°C to +70°C

Optical Components

Probes, switches, splitters, arrays

Components for splitting, switching or shaping the beam of the light are needed in many applications within medicine and industry. We offer a variety of components, for example:

- Light-guide cones
- Light-guide rods
- Light-guide fiber rods
- Splitters for fiber bundles
- Optical fibers with endo-optics
- Cross-section converters
- Vacuum feed-through assemblies
- Splitters for singlemode FTTX and special applications
- Optical switches for singlemode and multimode applications

Optical Components

Optical components	204
Light-guide cones	204
Fiber matrix with fiber row and defined fiber arrangements	205
Reflection probes	206
Light-guide rods	207
Light-guide fiber rods	207
Multi-branched fiber bundles – optical fibers	208
Fiber bundles – cross-section converters	208
Vacuum feed-through assemblies	209
Fiber arrays for singlemode and multimode applications	210
Order number scheme for fiber arrays	212
Singlemode splitters for FTTX and special applications	214

1xN ultra broadband splitter series	215
2xN ultra broadband splitter series	216
1x2 broadband PM splitter series	217
Multiple 1x2 ultra broadband splitter series	218
Order number scheme for optical splitters	219
Splitter modules, slots and trays	220
Optical switches for singlemode and multimode applications	222
	222 224
and multimode applications	
and multimode applications Fiber optical switch eol 1x2 · eol 1x4 · eol 2x2	224
and multimode applications Fiber optical switch eol 1x2 · eol 1x4 · eol 2x2 Fiber optical switch eol 1x8 · eol 1x12 · eol 1x16	224
and multimode applications Fiber optical switch eol 1x2 · eol 1x4 · eol 2x2 Fiber optical switch eol 1x8 · eol 1x12 · eol 1x16 Fiber optical switch eol 2x4 · eol 2x8	224 225 226

_

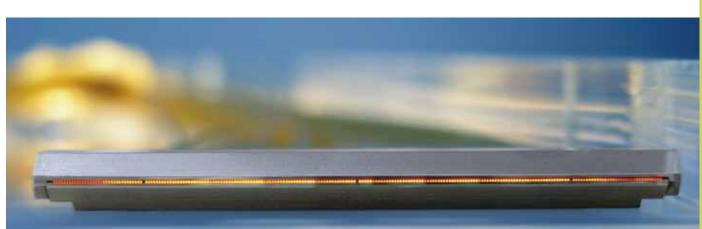
Optical components

204

Light-guide cones

Light-guide rod with differently sized cross-sectional areas at both ends \rightarrow changing the aperture of a light beam.

Cones bunch light from an optical waveguide with a large cross section into an optical waveguide with a small cross section, without major losses in the transition.

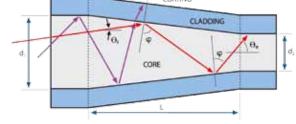

Application	Endoscopy
	Mono or fiber cones possible
	 Mono cone with core and cladding
Composition	 Fiber cone consisting of several
	hundred individual fibers $ ightarrow$ enlarging
	or reducing photographic-grade line possible
Diameter	0.1 mm to ≥10 mm
Receptacles	Stainless steel housing, as per medical standard

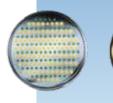
Fiber bundles – optical fibers with endo-optics

Single-branched and multi-branched optical fibers with endo-optics such as lenses, tilted mirrors, homogenisers or prisms so that the light beam can be tailored to the customer's requirements.

echnology, sensor plastic optical fibers also
n
from optical glass
sible light) or silica
//IR light)
otacles and adhesives
perature and ambient

Fiber matrix with fiber row and defined fiber arrangements


Optical fiber assembly with multiple thick-core fibers with specific and high-precision arrangement of the fibers.


Application	Analytical and sensor technology (spectroscopy in the chemical industry, mechanical engineering	
	and construction, astrophysics)	
Composition	 Optical fibers made from fused silica glass 	
	 Flexurally rigid assembly 	
	 Polished finish of fiber end faces also for use 	
	on high-performance lasers	
Length	Up to 200 m	

Fiber tapers

Optical fiber made from fused silica glass with different input and output core diameters and NA converters.

Application	Laser applications for working material	
Application	and spectroscopy	
	Ratio of input to output diameter:	
C	up to 1:5	
Composition	 Can be assembled with various tubes, 	
	standard and special connectors	
Length	Up to 25 m	
	COATING	
	CLADDING 1	

Application	Spectroscopic examinations of liquid,			
Application	gaseous or solid matter			
	 One reflection probe consists of at least 			
	two optical fibers			
	These are assembled together in a measuring			
	head at one end			
Composition	The other end consists of several outgoing			
	and incoming lines for connection			
	to spectroscopy systems			
	 Can be assembled with various tubes, 			
	standard and special connectors			
Length	Up to 200 m			
- Gilizana CC DN4	SMA knurl 91 fibers Me-Silicone-SS-DN5 No. of shrink- fit tube Splitter			
e-Silicone-SS-DN4	<u>–</u>			

Optical fiber for the spectroscopic analysis of liquid and solid materials.

Reflection probes

No. of shrinkfit tube Splitter States Splitter Spli

Arrangement of the fibers in these individual connectors can differ

Fiber**Connect**®

plastic with large

Light-guide	Light-guide rods		
Optical fiber made from silica, optical glass or plastic with large			
cross-sectional area as well as a core and cladding.			
	For applications with high light transmission where		
	11 5 5		
	the optical waveguide does not have to be flexible.		
Application	Light-guide rods are frequently also used		
	at the ends of optical waveguides consisting of fiber		
	bundles in order to homogenise the emitted light.		
Diameter	0.1 mm to ≥10 mm		
	Customer-specific:		
Receptacles	Also tapered if required (tapering across specific areas		
	of the cross-sectional area of the light-guide rod)		

Light-guide fiber rods

Optical fiber made from silica, optical glass or plastic with large cross-sectional area consisting of several hundred individual fibers.

	In applications where a picture or impression		
	is to be transmitted in addition to light and the		
Application	optical and image guide do not have to be flexible.		
	The number and diameter of the individual fibers		
	determine the resolution of the picture.		
Diameter	0.1 mm to ≥10 mm		
	Customer-specific: Also tapered if required		
Receptacles	(tapering across specific areas of the cross-section-		
	al area of the fiber rod)		

207

Multi-branched fiber bundles – optical fibers

Incoming light is directed to the required different positions via various individual arms (= splitter).

	Spectrometry, analytical technology, sensor
Application	technology. With glass or plastic fibers
	also for lighting and decoration.
	 One common fiber bundle and several individual
	fiber bundles as passive light-guide channels
	 Individual fibers made from optical glass
C	(when transmitting visible light) or quartz
Composition	(when transmitting UV/IR light)
ž.	 Protective tubes, receptacles and adhesives
nig .	as appropriate to temperature and ambient
	conditions
Length	Up to 100 m

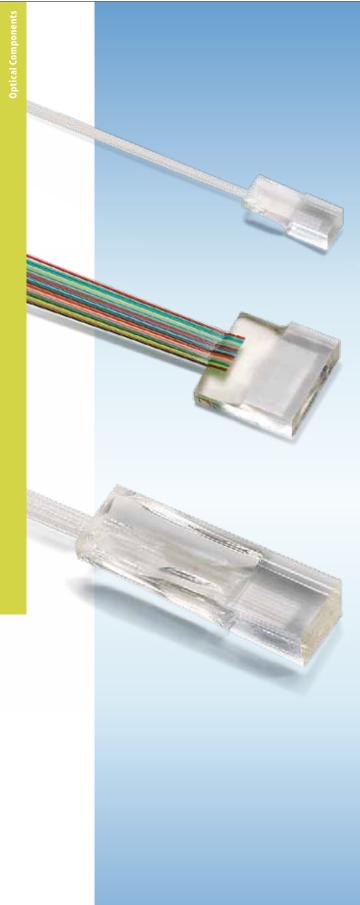
Fiber bundles – cross-section converters

For converting a circular light beam into a slot-shaped light beam

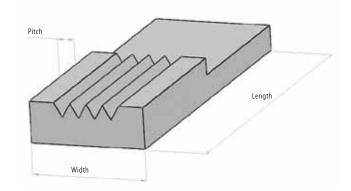
the second se				
		Spectrometry, analytical technology,		
	Application	sensor technology, e.g. for optimum illumination		
		of linear arrays		
		Individual fibers made from optical glass		
		(when transmitting visible or UV light) or quartz		
	Commentation	(when transmitting IR light)		
	Composition	 Protective tubes, receptacles, adhesives 		
		and endo-optics as appropriate to temperature		
		and ambient conditions		
1111				

Fiber**Connect**®

209



Vacuum	feed-t	hrough	asseml	olies


Optical components that create a transition from atmospheric areas to vacuum areas.

	Housing adapted to special flange and standard	
	flange (CF, KF, etc.) with vacuum-tight fiber	
C	bundle or mono fiber passages. With further fiber	
Composition	optic cables or direct connections for SMA, FCST,	
	for example, or customer-specific connectors	
	as appropriate to the customer's wishes.	
Application	Spectrometry, analytical technology and optical	
Аррисации	sensing in vacuum areas	

Fiber arrays for singlemode and multimode applications

Fiber arrays ar	e suitable, for example, for applications in the area		
-	l switches, in sensor technology, in printing machines,		
-	g to splitters and in free space optics.		
Wavelength	Available with a wide variety of different fiber types in a wide wavelength range from UV to IR light.		
	The spectrum ranges from standard singlemode		
	fibers to thick-core fibers (outer $\emptyset \ge 1.0 \text{ mm}$).		
	Arrays with a large number of fibers can be developed and produced on request.		
Polish	Arrays are supplied with PC and APC 8° polish.		
	The fiber end faces can also be given an anti-reflective		
	coating (from narrowband to broadband anti-reflective		
	coatings).		
Properties	 Almost all common connector types can be used: FCPC, FCAPC, E 2000PC, E 2000 APC, SCPC, SCAPC, LCPC, LCAPC, ST, SMA, others on request Arrays with up to 64 fibers and a pitch of 127 or 250 µm are available for the SM telecommunications fibers Positional accuracy of the fiber cores in the array better than 1 µm Qualification in combination with planar waveguide chips to TELCORDIA 1209 and 1221 Excellent long-term stability and mechanical strength Also suitable for use in harsh environments (-40°C to +85°C) 		
Special design	Two-dimensional arrays (customer-specific) have already been realised.		

125 µm AD

Number of fibers	Dimensions	125 µm AD
1	l x w x h [mm]	10.0x3.7x2.5

Fiber arrays for singlemode applications

1	l x w x h [mm]	10.0x3.7x2.5	10.0x3.7x2.5
	pitch [µm]	_	-
2	l x w x h [mm]	10.0x3.7x2.5	10.0x3.7x2.5
	pitch [µm]	250	127
Α	l x w x h [mm]	10.0x3.7x2.5	10.0x3.7x2.5
4	pitch [µm]	250	127
•	l x w x h [mm	10.0x3.7x2.5	10.0x3.7x2.5
8	pitch [µm]	250	127
16	l x w x h [mm]	10.0x10.0x2.5	10.0x3.7x2.5
	pitch [µm]	250	127
32	l x w x h [mm]		15.0x11.6x2.5
	pitch [µm]		127
64	l x w x h [mm]		15.0x11.6x2.5
64	pitch [µm]		127

Fiber arrays for multimode applications

Number of fibers	Dimensions	125 µm AD	125 µm AD	200–280 µm AD	400–480 µm AD	600–680 µm AD	800–880 µm AD
1	l x w x h [mm]	10.0x3.7x2.5	10.0x3.7x2.5	12.5x5.0x3.05	12.5x5.0x3.05	12.5x5.0x3.05	12.5x5.0x3.05
	pitch [µm]	-	-	-	-	-	-
2	l x w x h [mm]	10.0x3.7x2.5	10.0x3.7x2.5	13.0x5.0x3.05	16.5x5.0x3.05	18.5x5.0x3.05	18.5x5.0x3.05
	pitch [µm]	250	127	300	500	700	1000
4	l x w x h [mm]	10.0x3.7x2.5	10.0x3.7x2.5	16.0x5.0x3.05	21.5x5.0x3.05	23.5x5.0x3.05	23.5x5.0x3.05
	pitch [µm]	250	127	300	500	700	1000

Order number scheme for fiber arrays

212

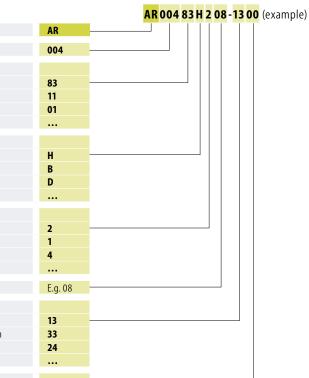
Array Number of fibers

Fiber type GIF100/140/250 NA 0.29 SMF28 9/125/250/900 µm tight buffer IR AS400/480IRAN Others on request

Secondary coating

0.9 mm Hytrel, black Metal corrugated tube PVC protection, black 1.8 mm Others on request

Connector type


All fibers with FC/PC All fibers with FC/APC All fibers with E 2000 Others on request

Length in dm

Chip

MM 4-channel v-groove 125 $\mu m,$ glass, 0.25 mm pitch, 10x3.5x2.5 mm SM 16-channel v-groove 125 $\mu m,$ glass, 0.25 mm pitch, 10x3.5x2.5 mm MM 4-channel v-groove 830 $\mu m,$ glass, 1 mm pitch, 23.5x5x3.05 mm Others on request

Variants

Order example:

AR00483H208-1300 Array with 4 GI100/140/250 NA 0.29 fibers, FC/PC connector, 0.9 mm Hytrel tube, length 80 cm, MM 4-channel v-groove 125 µm chip, glass, pitch 0.25 mm, dimensions 10 x 3.5 x 2.5 mm (l x w x h)

Fiber Tech ®	Fiber Switch ®	
		213

Singlemode splitters for FTTX and special applications

LEONI splitters are based on a unique planar waveguide technology that offers maximum performance and exceptional long-term stability. The standard products are low-loss and broadband singlemode splitters for the entire telecommunications wavelength range with splitting rates of 1x2 to 1x64, including splitters such as 1x5 or 1x10.

Planar waveguide components for the near infrared (NIR) and visible (VIS) wavelength range are in development. LEONI offers alternative micro-optical splitters and couplers for special applications (e.g. multimode fiber optical systems).

The splitters are above all characterised by

- Very low insertion losses
- High uniformity
- High extinction rate
- Lowest PDL
- Widest wavelength range (1260 to 1650 nm)
- Small, rugged metal housing
- Any fiber assembly
- Own connectors
- Exceptional long-term stability tested to Telcordia GR 1209 and 1221

Fiber**Connect**° Fiber**Tech**°

1xN ultra broadband splitter series

Planar waveguide splitters:

An optimum balance of performance versus cost is achieved based on the exchange of silver ions in a glass specially developed for this process. Intelligent design and sophisticated manufacturing methods give these splitters exceptional quality and reliability and make them especially suitable for use under the harshest environmental conditions.

	Standard products	
	1x2, 1x4, 1x8, 1x10, 1x16 and 1x3	2
Product range	Customer-specific designs (on requ	iest),
	e.g. 1xN with N≠2 ⁿ , asymmetrical s	plits,
	splitters for lower wavelengths are	available on request.
	 For numerous applications with 	in telecommunications
Application	and sensor technology	
Application	 For broadband splitting or com 	bination of singlemode
	optical fibers	
Composition		
Connectors	UPC or APC:	
connectors	SC, FC, LC, MU, E2000, ST, MPO, DIN	
Trays	"Plug & play" for various connector	types
iiuys	e.g. LGX, Corning CCH	
Slots	19" slots with connector panels	
51015	1, 2 or 3 HU	
Fiber type	SMF 28 (9/125/250 µm) (other type	s on request)
Fiber length	≥1 m	
Housing size	40 x 4 x 4 mm for 1x8 splitter	
110031119 3120	(other shapes on request)	
Temperature range	Operating temperature	-40 to +85°C
remperature range	Storage temperature	-40 to +85°C

Splitter type	1x2	1x4	1x8	1x10	1x16	1x32*
Max. insertion loss [dB]**	3.9	7.4	10.8	12.0	14.1	17.3
Max. uniformity [dB]	0.5	0.9	1.0	1.2	1.3	1.6
Return loss	≥55 dB					
Directivity	≥55 dB					
Polarisation-dependent losses	≤0.15 dB					
Wavelength ranges	1260–1360 nm and 1480–1650 nm					

* Applies across the entire wavelength and temperature range as well as for all polarisation states ** Value is up to 0.3 dB higher for the extended wavelength range from 1360–1480 nm

2xN ultra broadband splitter series

Planar waveguide splitters:

An optimum balance of performance versus cost is achieved based on the exchange of silver ions in a glass specially developed for this process. Intelligent design and sophisticated manufacturing methods give these splitters exceptional quality and reliability and make them especially suitable for use under the harshest environmental conditions.

	Standard products				
	2x4 and 2x8				
Product range	Customer-specific designs 2x2, 2x16, 2	2x32 and 2xN			
	with e.g. $2xN$ with $N\neq 2^n$, asymmetrical splits,				
	splitters for lower wavelengths are ava	ailable on request.			
	 For numerous applications within t 	elecommunications			
Application	and sensor technology				
Аррисаціон	 For broadband splitting or combination 	ation of singlemode			
	optical fibers				
Composition					
Connectors	UPC or APC:				
connectors	SC, FC, LC, MU, E2000, ST, MPO, DIN				
Trays	"Plug & play" for various connector typ	pes,			
indys	e.g. LGX, Corning CCH				
Slots	19" slots with connector panels				
51013	1, 2 or 3 HU				
Fiber type	SMF 28 (9/125/250 µm) (other types of	n request)			
Fiber length	≥1 m				
Housing size	40 x 4 x 4 mm (other shapes on reques	st)			
Temperature range	Operating temperature	-20 to +60°C			
remperature range	Storage temperature	-40 to +85°C			

Splitter type	2x4	2x8	
Max. insertion loss [dB]*	7.8	11.2	
Max. uniformity [dB]	1.5	1.8	
Return loss	≥55 dB		
Directivity	≥55 dB		
Polarisation-dependent losses	≤0.15 dB		
Wavelength ranges	1260–1360 nm and 1480–1650 nm		

* Applies across the entire wavelength and temperature range as well as for all polarisation states. Value is up to 0.3 dB higher for the extended wavelength range from 1360–1480 nm.

Fiber**Connect°** Fiber**T**o

Singlemode Splitters for FTTX and special applications

1x2 broadband PM splitter series

Planar PM splitters:

Planar PM splitters 1x2 from LEONI are developed for special applications involving high polarisation retention. The special ion exchange process for manufacturing the extremely stress-free waveguide structures on planar chips results in excellent and stable polarisation properties even under extreme conditions.

Composition		
Connectors	UPC or APC:	
connectors	SC, FC, LC, MU, E2000, ST, MPO, DIN	
Trays	"Plug & play" for various connector types,	,
114ys	e.g. LGX, Corning CCH	
Slots	19" slots with connector panels	
51015	1, 2 or 3 HU	
Fiber type	Fujikura Panda SM 13-P/SM 15-P	
Fiber length	1 m	
Housing size	40 x 4 x 4 mm for 8-fold 1x2 splitter	
Housing size (other shapes on request)		
T	Operating temperature	-40 to +60°C
Temperature range	Storage temperature	-40 to +85°C

Splitter type	1	1x2		
Quality grade	ST (Standard)	HQ (High quality)		
Max. insertion loss [dB]*	4.2	4.0		
Max. uniformity [dB]	0.6	0.5		
Return loss	≥55 dB			
Directivity	≥55 dB			
Extinction rate of polarisation [dB]	≥20	≥25		
Wavelength ranges	1260–1650 nm			

* Applies across the entire wavelength and temperature range as well as for all polarisation states. Value is up to 0.3 dB higher for the extended wavelength range from 1360–1480 nm.

Multiple 1x2 ultra broadband splitter series

Planar multi waveguide splitters M-fold 1x2:

An optimum balance of performance versus price is achieved based on the exchange of silver ions in a glass specially developed for this process. Intelligent design and sophisticated manufacturing methods give these splitters exceptional quality and reliability and make them especially suitable for use under the harshest environmental conditions.

	Standard products			
	1x2 M-fold (where M = 2 to 8)			
Product range	Customer-specific designs, other comb	inations and splitters		
	for lower wavelengths available on req	uest.		
Application	 For numerous applications within t and sensor technology 	elecommunications		
	 For broadband splitting or combination optical fibers 	ation of singlemode		
Composition				
Connectors	UPC or APC:			
connectors	SC, FC, LC, MU, E2000, ST, MPO, DIN			
Trays	"Plug & play" for various connector typ	pes,		
ITays	e.g. LGX, Corning CCH			
Slots	19" slots with connector panels			
51013	1, 2 or 3 HU			
Fiber type	SMF 28 (9/125/250 µm) (other types o	n request)		
Fiber length	≥1 m			
Housing size	69 x 10 x 5.6 mm (other shapes on req	uest)		
Tomporaturo	Operating temperature -40 to +85°C			
Temperature range	Storage temperature	-40 to +85°C		

Splitter type	M-fold 1x2* (M = 1 to 8)					
Splitting rate	50/50 60/40 70//30 80/20 90/10 95/5					
Max. insertion loss [dB]**	3.9	3.0	2.1	1.6	0.9	0.7
Max. uniformity [dB]	3.9	4.8	6.1	7.8	10.9	14.5
WDL*** channel 1 (max.) [dB]	0.5	0.5	0.5	0.5	0.5	0.5
WDL*** channel 2 (max.) [dB]	0.5	0.5	0.6	0.7	0.8	0.9
Return loss	≥55 dB					
Directivity	≥55 dB					
Polarisation-dependent losses	≤0.15 dB					
Wavelength ranges	1260–1360 nm					

* Other multi-splitter types (e.g. 1x3, 1x4) on request

** Applies across the entire wavelength and temperature range as well as for all polarisation states

*** WDL: wavelength-dependent loss between 1260 and 1650 nm (uniformity of the IL)

Order number scheme for optical splitters

Optical splitter	v
Input channel number N	Code
2	2
4	4
8	8
	etc.
Output channel number N	
(see input channel number)	E.g. 2
	2.9.2
Input fibers	
250 μm individual fiber	10
900 μm individual fiber (tight buffered)	20
900 µm individual fiber (loose tube)	30
N-f. ribbon cable	40
Output fibers	
(see input fibers)	E.g. 10
	2.9.10
Input connectors	
No connector	NV
FC	10
SC	20
ST	30
LC	40
E2000	50
MU	60
DIN	70
SMA	80
MPO N fibers (nn = 04, 08 or 12)	1nn
End face polish PC	+A
End face polish APC	
Output connectors	
See input connectors	E.g. 10
Variants (e.g. quality grades)	
Standard	ST
High quality	HQ
Customer specification	CU
	CU

Order example:

V 1x02 10 10-10 10-ST means 1x2 splitter with 250 µm input fibers, 250 µm output fibers, FC/APC connector, standard specification 220

Splitter modules, slots and trays

Splitter modules, slots and trays

Based on the described splitter components, LEONI offers a wide range of further assemblies in modules, slots and trays that are suitable for direct installation in closures, racks or cabinets. A range of housing shapes from the standard housing customary in the market to customer-specific housing solutions are available.

Further information and solution proposals on request

Vertical slots (3 HU) in which one 3-fold 1x4 splitter component with 12 output fibers with connectors (SC/APC) and three input fibers placed in one splice tray have been installed.

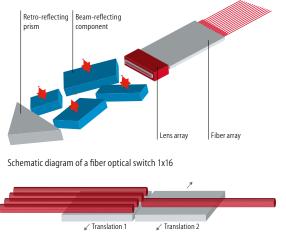
221

www.leoni-fiber-optics.com

LEONI

Optical switches for singlemode and multimode applications

Application and technology


LEONI's eol and mol series have been developed for applications with the highest requirements in the telecommunications area, in measurement and testing and in the biomedical area.

Examples of these complex applications include spectroscopy (mol series), laser scan microscopy, multi-channel optical performance monitoring, fiber Bragg sensors, testing of fiber optical cables and environmental trace analysis. LEONI

Optical Switches for singlemode and multimode applications

Tiberspilt

223

Schematic diagram of a fiber optical multimode switch 1x4

LEONI's fiber optical switches are based on a patented micromechanical/micro-optical design. This guarantees excellent properties, considerable flexibility and maximum long-term stability for many applications.

The switches are available for wide wavelength ranges from the visible to the infrared and for a wide variety of fiber types, including PM fibers with the eol series. Switches with a higher specified number of channels can also be developed and produced on request.

Optical properties

- Low insertion loss
- Low polarisation losses (eol series)
- Excellent repeatability
- High optical isolation
- Extremely low back reflection (eol series)
- Wide to ultrawide (mol series) spectral range
- Short switching times

Housing properties

- Small, rugged metal housing
- Flexible housing options, compact housing or tabletop housing
- Connector assembly in the plant
- The integrated microcontroller provides various interfaces and control signals
- Low power consumption

Reliability

- Excellent long-term reliability, tested to Telcordia GR-1073
- Lifetime >100 million switching cycles

Fiber optical switch eol 1x2 · eol 1x4 · eol 2x2

For requests please specify:

 Number of channels 	1x2, 1x4 or 2x2
Spectral range	Operating wavelength range
 Fiber type 	E.g. Corning SMF 28 type
 Pigtail length 	In metres
Connector type(s)	E.g. LC, FC, SC, ST, MU, E2000
 Electronic interface 	E.g. TTL, RS-232, I ² C
	(Ethernet, USB on request)
Conscipling quiraments	

Special requirements

Switch version		IR	NIR	VIS	PM
Specifications					
Operating wavelength	[nm]	1260 – 1360 1480 – 1630	700 – 1100	400 - 690	VIS-IR
Max. insertion loss (typical)	[dB]	1.0 (0.7)	1.4 (0.9)	1.4 (0.9)	1.4 (0.9)
Return loss	[dB]	≥65	≥55	≥55	≥55
Crosstalk	[dB]		≥	55	
Repeatability	[dB]	≤0.005	≤0.01	≤0.01	≤0.01
Polarisation-dependent losses	[dB]	≤0.05	≤0.05	≤0.05	_
Polarisation-dependent crosstalk (typ	oical) [dB]	-	_	_	≤20 (≤22)
Switching times	[ms]		5	2	
Guaranteed lifetime	[cycles]		>	108	
Switching frequency	[S ⁻¹]		≤	50	
Operating voltage	[V]		!	5	
Power consumption	[mW]	<450			
Operating temperature	[°C]	0 to +60			
Storage temperature	[°C]	-40 to +80			
Housing dimensions	[mm]	75 x 50 x 13	75 x 50 x 13	124 x 56 x 13	75 x 50 x 13

iber**Connect°**

Optical Switches for singlemode and multimode applications

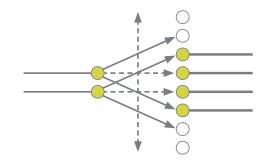
Fiber optical switch eol 1x8 · eol 1x12 · eol 1x16

For requests please specify:

 Number of channels 	1x8, 1x12 or 1x16
Spectral range	Operating wavelength range
 Fiber type 	E.g. Corning SMF 28 type
 Pigtail length 	In metres
Connector type(s)	E.g. LC, FC, SC, ST, MU, E2000
 Electronic interface 	E.g. TTL, RS-232, I ² C
	(Ethernet, USB on request)

Special requirements

Switch version		IR	NIR	VIS
Specifications				
Operating wavelength	[nm]	1260 — 1360	700 – 1100	400 - 690
		1480 – 1630		
Max. insertion loss (typical)	[dB]	1.0 (0.7) *)	1.5 (0.9)	1.5 (0.9)
Return loss	[dB]	≥60	≥55	≥55
Crosstalk	[dB]		≥55	
Repeatability	[dB]	≤0.005	≤0.01	≤0.01
Polarisation-dependent losses	[dB]		≤0.1	
Polarisation-dependent crosstalk (typ	ical) [dB]	_	_	_
Switching times	[ms]		≤2	
Guaranteed lifetime	[cycles]		>10 ⁸	
Switching frequency	[S ⁻¹]		≤50	
Operating voltage	[V]		5	
Power consumption	[mW]		<450	
Operating temperature	[°C]		0 to +60	
Storage temperature	[°C]		-40 to +80	
Housing dimensions	[mm]		124 x 56 x 13	


*) Fiber optical switch 1x16 eol: max. insertion loss for the IR version is 1.2 dB

Fiber optical switch eol 2x4 · eol 2x8

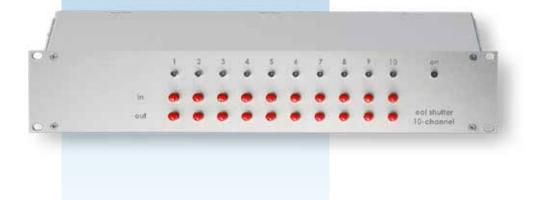
For requests please specify:

 Number of channels 	2x4, 2x8
Spectral range	Operating wavelength range
 Fiber type 	E.g. Corning SMF 28 type
 Pigtail length 	In metres
Connector type(s)	E.g. LC, FC, SC, ST, MU, E2000
 Electronic interface 	E.g. TTL, RS-232, I ² C
	(Ethernet, USB on request)
 Special requirements 	Specify configuration

Switch version		IR	NIR	VIS
Specifications				
Operating wavelength *)	[nm]	1260 – 1360 1480 – 1630	700 – 1100	400 – 690
Max. insertion loss (typical)	[dB]	1.0 (0.7)	1.5 (0.9)	1.5 (0.9)
Return loss	[dB]	≥60	≥55	≥55
Crosstalk	[dB]		≥55	
Repeatability	[dB]	≤0.005	≤0.01	≤0.01
Polarisation-dependent losses	[dB]		≤0.1	
Switching times	[ms]		≤2	
Guaranteed lifetime	[cycles]		>108	
Switching frequency	[S ⁻¹]		≤50	
Operating voltage	[V]		5	
Power consumption	[mW]		<450	
Operating temperature	[°C]		0 to +60	
Storage temperature	[°C]		-40 to +80	
Housing dimensions	[mm]		124 x 56 x 13	

*) Detailed information about the different wavelength ranges can be found in separate data sheets.

Optical Switches for singlemode and multimode applications


Switch version		Core diameter 50 μm to < 200 μm	Core diameter 200 µm to 400 µm	Core diameter 600 μm to 800 μm
Specifications				
Operating wavelength	[nm]	Dep	endent on the transmission ra	ange
Max. insertion loss (typical)	[dB]	≤1.0 (0.7)	≤1.0 (0.5)	≤1.0 (0.5)
Low return loss			Optional	
Crosstalk	[dB]	< -55	<-45	<-40
Repeatability	[dB]		0.03	
Switching times	[ms]	≤5	≤10	≤20
Guaranteed lifetime	[cycles]		>108	
Switching frequency	[S ⁻¹]		≤50	
Operating voltage	[V]		5	
Power consumption	[mW]		<450	
Operating temperature	[°C]		0 to +60	
Storage temperature	[°C]		-40 to +80	
Fiber core diameter	[µm]		50 up to 800	
Housing		Different housi	ng types from compact to tab	oletop housings.

Minimum size dependent on type of fiber used.

Fiber optical multi-channel shutter eol N (N = 1 to 16, mol shutters on request)

For requests please specify:

- Number of channels N = 1, 2, 3 ... 16
 Spectral range Operating wavelength range
 Fiber type E.g. Corning SMF 28 type
 Pigtail length In metres
 Connector type(s) E.g. LC, FC, SC, ST, MU, E2000
 Electronic interface E.g. TTL, RS-232, I²C (Ethernet, USB on request)
- Special requirements

Switch version		IR	NIR	VIS
Specifications				
Operating wavelength	[nm]	1260 — 1650	700 – 1100	400 - 690
Max. insertion loss (typical)	[dB]	1.0 (0.7)	1.5 (0.9)	1.5 (0.9)
Low return loss	[dB]	≥60	≥55	≥55
Crosstalk	[dB]		≥55	
Repeatability	[dB]	≤0.005	≤0.01	≤0.01
Guaranteed lifetime	[cycles]		>108	
Polarisation-dependent losses	[dB]		≤0.1	
Switching times	[ms]		≤2	
Switching frequency	[S ⁻¹]		≤50	
Operating voltage	[V]		5	
Power consumption	[mW]		<450	
Operating temperature	[°C]		0 to +60	
Storage temperature	[°C]		-40 to +80	
Housing (standard) *)			19" slot 1–3 HU	

*) Customer-specific housing on request.

229

Order number scheme for optical switches

		<mark>M 01</mark> x 004 61 2	B 10 A
witch type	Code		
SM	S		
MM	M		
Shutter	н		
Number of fibers, input	01		
Number of fibers, output	004		
iber type			
50/125/250 NA 0.22	F = (1		
)/125/250/900 μm tight buffer,	E.g. 61		
others on request			
Connector type			
All fibers with FC/APC	1		
All fibers with FC/PC	2		
All fibers with FC/AFC	3		
All fibers with E2000/PC	4		
All fibers with SC/APC	5		
All fibers with LC/PC	7		
All fibers with ST/PC	8		
All fibers with E2000/PC	В		
All fibers with SC/PC	E		
All fibers with LC/APC	1		
Others on request			
econdary coating			
lone	Α		
Nith metal corrugated tube 3 mm	В		
Nith metal corrugated tube 5 mm	C		
900 μm buffer + metal corrugated tube 3 mm	D		
000µm buffer Hytrel loose tube	J		
)thers on request			
ength in dm	E.g. 10		
lousing			
Standard compact large 124 x 56 x 13	Α		
Standard compact small 75 x 50 x 13	B		
Others on request	C		
lectrical activation			
RS232, I ² C, TTL (without strobe)	1		
RS232, I ² C, parallel (with strobe)	2		
thernet	3		
Others on request			

Order example:

M 01x004 61 2 B 10 A 1 means 1x4 MM switch with 50/125/250 NA 0.22 fibers, FC/PC connector, metal corrugated tube 3 mm od, 1 m pigtail length, standard compact large 124x56x13 and S232, I2C,TTL activation.

Tools, measuring devices and accessories

Specially adapted tools are needed to assemble fiber optic cables with connectors. This selection of tools and aids is tailored to POF and PCF cables and connectors.

Their assembly is extremely straightforward in comparison with the conventional adhesive technology used with glass fiber optic cables and can be learned by non-specialists in a very short time. It takes between 1 and 5 minutes per connector to assemble these cables.

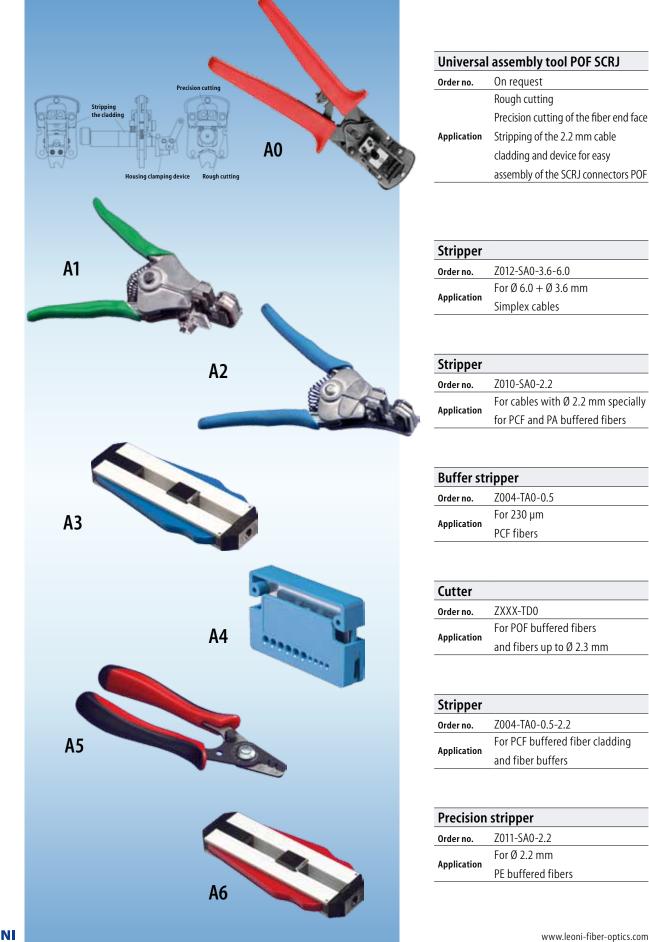
Suitable tools are available for the process steps from stripping through crimping and end face processing to final checking.

This makes the assembly of POF in particular a cinch. These assembly tools for PCF and POF are specially tailored to LEONI's cable constructions and connectors.

PCF fiber optic cables in particular can be quickly and easily assembled using the crimping/clamping and cleaving technique. This popular technique is frequently used for field assembly. However the familiar technique for glass fiber optic cables with twocomponent adhesives and grinding/polishing is also commonly used.

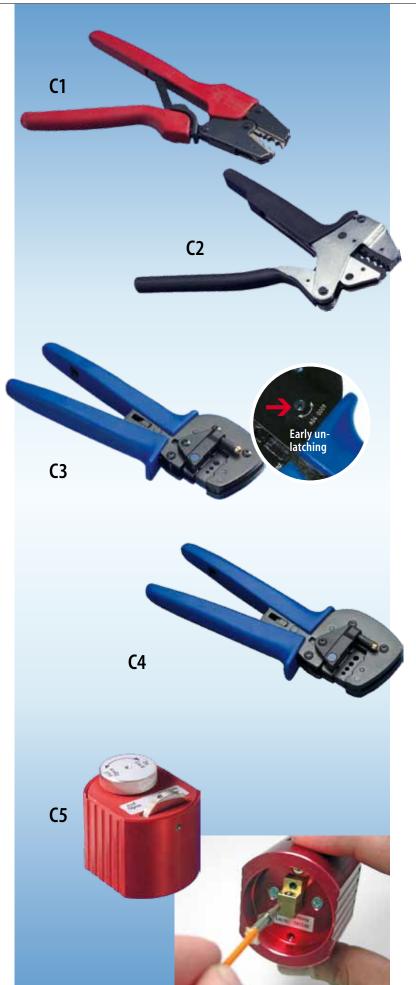
Suitable measuring devices for a wide range of wavelengths are available for the final inspection.

Support


Strippers		232
Universal assembly tool POF SCRJ	A0	232
Stripper	A1	232
Stripper	A2	232
Buffer stripper	A3	232
Cutter	A4	232
Stripper	A5	232
Precision stripper	A6	232
Crimp and cleave tools		233
Crimp tool POF	C1	233
Crimp tool POF	C2	233
Universal crimp tool POF	C3	233
Universal crimp tool PCF	C4	233
Cleave tool PCF	C5	233
Tools for fiber end face treatment		234
Polishing set	P1	234
Polishing film 3 µm grain	P2	234
Lapping film 600	Р3	234
Diamond polishing film, 9 µm grain	P4	234
Diamond polishing film, 1 µm grain	P5	234
Polishing disc ZSMA	P6	235
Polishing disc F05	P7	235
Polishing disc HP	P8	235
Universal polishing disc, 2.5 mm	Р9	235
Polishing disc ST	P10	235
Hot plate incl. power supply unit POF	P11	235

230

Measuring devices		236
Optical power meter with digital display		236
Interchangeable adapter, receiver side		236
Optical transmitter - wavelength dependent on adapter		237
Active interchangeable adapter		237
Microscope		238
Golden Fiber – pre-assembled reference cable with MOST inserts at both	ends	238
Measurement kit		239
Fiber optic assembly kits		240
Fiber optic assembly kit for FSMA connectors PCF	K1	240
Fiber optic assembly kit for ST connectors PCF	K2	240
Fiber optic assembly kit for SC connectors PCF	К3	241
Fiber optic assembly kit for F05/F07 connectors PCF	K4	242
Fiber optic assembly kit for HP connectors PCF	K5	243


Strippers

232

h° Fiber**Sw**

Crimp and cleave tools

Crimp tool POF		
Order no.	ZSMA-CC0	
Application	For FSMA connectors POF	
Application	with Ø 2.2 / 3.6 / 6.0 mm	

Crimp to	ol POF

Order no.	ZXST-CC0
Application	For ST connectors POF

Universal crimp tool POF

 Order no.
 ZXXX-CB0, see table

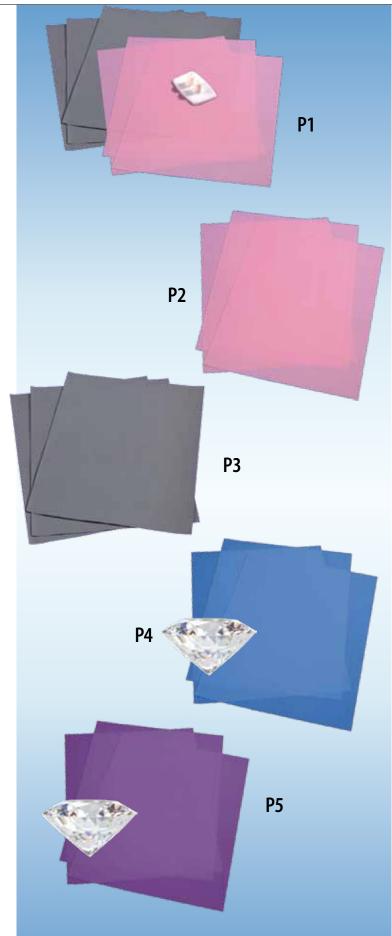
 Application
 For ST / FSMA / V-PIN (HP) connectors

Order tabl	e	
Connector type	Order no.	Crimp dimen- sions [mm]
V-PIN	SHP-SV0-19-0010	5.0
V-PIN	SHP-DS0-19-0010	5.0
V-PIN metal	SHP-SS0-20-0010	3.0
F05 metal	SF05-SS0-20-0010	5.0
FSMA	SSMA-SS0-02-0050	3.0
FSMA	SSMA-SH0-02-0010	3.0
ST	SXST-SS0-22-0010	3.5

Universal crimp tool PCF

Order no.	ZXXX-CC0, see table
	For PCF buffered fiber

Application For PCF buffered fiber cladding and fiber buffers


Order ta	able	
Connector type	Order no.	Crimp dimen- sions [mm]
FSMA	SHP-SV0-19-0010	Anchor 3.3
ST	SXST-SK0-01-0020	Anchor 4.5
ST	SXST-SK0-01-0030	Anchor 4.5

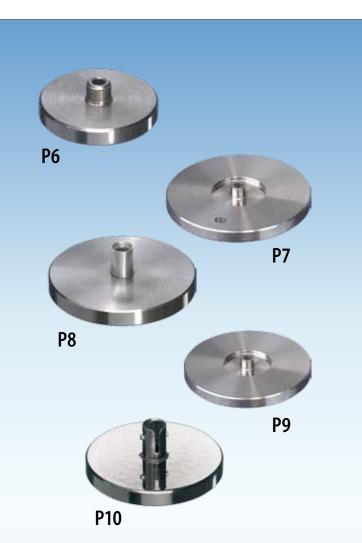
Cleave tool PCF	
Order table	
Connector type	Order no.
For FSMA connectors PCF (clamp version)	ZSMA-TW0
For ST connectors PCF (clamp version)	ZXST-TW0
For HP connectors (V-PIN) PCF (crimp and cleave version)	ZSHP-TW0
For F05 / F07 connectors	ZF07-TW0
For SC connectors (clamp version)	ZXSC-TW0

LEONI

Tools for fiber end face treatment

Support

Polishing set	
Order no.	ZHP-PS0
	Lapping film 600
Contents	Polishing film 3µm
	Polishing disc
Quantity	1 sheet of each
Sheet size	$100 \times 100 \text{ mm}$


Polishing film 3 µm	
Order no.	ZHP-PS0
Grain	3 µm
Material	AI2O3
Quantity	10 sheets
Sheet size	$216 \times 279 \text{ mm}$

Lapping	film 600
Order no.	ZHP-PS0
Grain	600
Material	AI2O3
Quantity	10 sheets
Sheet size	230 × 280 mm

Diamono	l polishing film, 9 µm grain
Order no.	Z005-PS1
Grain	9 µm
Material	C (diamond)
Quantity	15 sheets
Sheet size	$230 \times 280 \text{ mm}$

Diamond	polishing film, 1 µm grain
Order no.	Z007-PS1
Grain	1 µm
Material	C (diamond)
Quantity	10 sheets
Sheet size	$230 \times 280 \text{ mm}$

234

Polishing disc ZSMA	
Order no.	ZSMA-SP0
Application	For FSMA connectors (metal)

Polishing disc F05

Order no.	ZF05-SP0-
Application	For F05 connectors (metal)
Description	With wear indicator

Polishing disc HP

Order no. 🛛 🕹	ZHP-TPO
Application	For HFBR connectors, Ø 2.2 mm

Universal polishing disc, 2.5 mm

Order no.	ZXXX-SP0-2.5	
Application	For ST, FSMA and V-PIN	
	(HP) connectors	

Polishing disc ST

Order no.	ZXST-SPO
Application	For PCF buffered fiber cladding
	and fiber buffers
Application	

Hot plate incl. power supply unit POF

For assembling plastic fiber optic cables. The hot plate method is an alternative to the lapping and polishing technique for finishing the POF fiber end face. It is characterised in particular by its high reproducibility and ease of handling. With this method, the fiber end faces are fused at a temperature of approx. 140°C and moulded into their final shape. Almost all POF connectors are available for this special assembly technique.

Operating voltage	24 V / 1 A power supply unit	
Power consumption	24 W	
Input	220 V AC / 50 Hz / 38 W	
Temperature	Approx. 140°C	
Output	24 V DC / 1 A / 24 W	
Connector	DIN connector	

Order table Connector type Order no. With guide for FSMA and F05/F07 connectors ZSMA-THO With guide for ST (BFOC) connectors ZXST-THO

Measuring devices

ST (BFOC)

FSMA

F05

FCPC

Optical power meter with digital display

This meter is used to determine the power of a light source (LED or laser) or to measure the attenuation of a fiber optic cable when using a stabilised light source. The microprocessor technology used enables the meter to measure two wavelengths as well as display the results in μ W or dBm. An automatic zero adjustment is carried out when the device is switched on. An interchangeable adapter system enables the connection of all commonly used optical fiber connectors.

Note: The device is supplied without adapters. Please order appropriate interchangeable adapters and reference cables for fiber optic cable connections separately.

Optical detector	Silicone PIN diode
Detector area	2.65 x 2.65 mm
Optical connection	Interchangeable adapter, screw-in
Display range	-50.0 to +3 dBm

Order table

Wavelength meter	Order no.
660 / 850 nm	ZXXX-TM0
1300 / 1550 nm	ZXXX-TM0_1300
520 / 660 / 850 / 940 nm	ZXXX-TM0-4W

Interchangeable adapter, receiver side

The connector type and required wavelength are defined by means of simple push-in adapters. The basic device remains the same.

Order table		
Connector type	Order no.	
ST (BFOC)	ZXST-TX0	
FSMA	ZSMA-TX0	
F05	ZF05-TX0	
HP	ZHP-TX0	
HP	ZHPD-TX0	
FCPC	ZFCPC-TX0	

Support

236

237

Optical transmitter – wavelength dependent on adapter

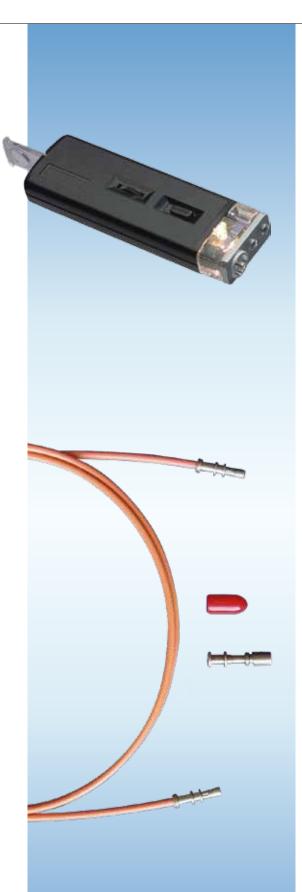
Basic device with BNC adapter for connecting different fiber optic cable connector adapters. The connector adapters are available with the wavelengths 650 nm, 660 nm and 850 nm. The adapters for the wavelength 660 nm are specified as an example in the specified order numbers.

Note: The device is supplied without adapters. Please order appropriate active interchangeable adapters and reference cables for fiber optic cable connections separately.

Note for measurements with POF buffered fibers Ø 2.2 mm without connector: The fiber ends of the POF buffered fibers to be measured must be cleanly cut (e.g. using the POF fiber cutter ZXXX-TD0). The SMA 2.2 mm clamp connectors SSMA-SV0-02-0020 must be attached to the prepared fiber ends in such a way that the end face of the connector is flush with the ferrule. The buffered fibers "assembled" in this way can now be measured using the meter (with FSMA adapter) and the connectors can then be removed again.

Order table

Wavelength transmitter	Order no.
520 to 940 nm	ZXXX-TS0
1300 nm	ZXXX-TS0-1300
1550 nm	On request


Active interchangeable adapter

The connector type and required wavelength are defined by means of simple push-in adapters. The basic device remains the same.

Order table			
Connector type	Order no.		
ST (BFOC)	ZXST-TS0-660		
FSMA	ZSMA-TSO-660		
F05	ZF05-TS0-660		
HP	ZHP-TS0-650		
HP	ZHPD-TS0-650		

Other types on request.

Measuring devices

Microscope

Microscopes with 100x magnification are used to check the quality of the finished fiber faces of the POF and of cleaved PCF connectors.

Our camera-based microscope supplies better results. The newly developed device is adapted to all commonly used POF connectors. The interchangeable adapter is also used with the attenuation meter. The microscope works with up to 200x magnification. The scope of delivery also includes a small monitor as well as the power supply unit connector for supplying the power. The device is suitable for both mass production and use on-site.

Order no.	ZXXX-TF0-V1
Magnification	100x

Golden Fiber – pre-assembled reference cable with MOST inserts at both ends		
Length	1 m	
Destau	Pin – pin	
Design	Pin – socket	

Order table

Connector ty	pe	Order no.
ST (BFOC)	Pin – pin	KMIP-MIP17001M
FSMA	Pin – socket	KMIP-MIS17001M

Support

Measurement kit

With transmitter and power meter - with various adapters

Contents of the measurement kit

Optical power meter with digital display Optical transmitter, basic device with BNC connection Transmitter adapter Receiver adapter 2 power supply units for worldwide use Reference cable

Order table

Measurement kit suitable for connector type	Order no.
ST (BFOC)	ZXST-KM0
FSMA	ZSMA-KM0
F05	ZF05-KM0
НР	ZXHP-KM0

Fiber optic assembly kits

240

K1 + K2

Fiber optic assembly kit for FSMA connectors PCF (K1)

The fiber optic assembly kits K1 and K2 are the same except for the cleave tool and microscope adapter.

Order no.	Contents of the fiber optic assembly kit
Z004-TA0-0,5-2,2	Stripper for 230 µm PCF conductors
ZXXX-TN0	Kevlar scissors
ZSMA-TW0	Cleave tool – FSMA
00405402	Container for fiber off-cuts
ZXXX-TL0	Card cleaner
ZXXX-TF0-V1	Microscope, 100x magnification
ZSMA-AF0-V1	Microscope adapter

Order table	
Suitable for Simplex FSMA connectors	Order no.
For PCF cables with buffered fiber Ø 2.2 mm	SSMA-SW0-02-0010
For PCF cables with buffered fiber Ø 3.0 mm	SSMA-SW0-02-0020
Fiber optic assembly kit	ZSMA-KW0

Fiber optic assembly kit for ST connectors PCF (K2)

The fiber optic assembly kits K1 and K2 are the same except for the cleave tool and microscope adapter.

Order no.	Contents of the fiber optic assembly kit
Z004-TA0-0,5-2,2	Stripper for 230 µm PCF conductors
ZXXX-TN0	Kevlar scissors
ZXST-TW0	Cleave tool – PCF ST
00405402	Container for fiber off-cuts
ZXXX-TL0	Card cleaner
ZXXX-TF0-V1	Microscope, 100x magnification
ZXST-AF0-V1	Microscope adapter

Order table Suitable for Simplex ST connectors For PCF cables with buffered fiber Ø 2.2 r For PCF cables with buffered fiber Ø 2.5 r

For PCF cables with buffered fiber Ø 2.2 mm	SXST-SW0-02-0010
For PCF cables with buffered fiber Ø 2.5 mm	SXST-SW0-02-0020
For PCF cables with buffered fiber Ø 3.0 mm	SXST-SW0-02-0030

Fiber optic assembly kit

ZXST-KW0

Order no.

Order table

Suitable for Simplex SC connectors	Order no.
For PCF cables with buffered fiber Ø 2.2 mm	SXSC-SW0-02-0010

Fiber optic assembly kit

ZXSC-KW0

Fiber optic assembly kit for SC connectors PCF

K3

Order no.	Contents of the fiber optic assembly kit
Z004-TA0-0,5-2,2	Stripper for 230 µm PCF conductors
ZXXX-TN0	Kevlar scissors
ZXSC-TWO	Cleave tool – PCF
00405402	Container for fiber off-cuts
ZXXX-TL0	Card cleaner
ZXXX-TF0-V1	Microscope, 100x magnification
ZXST-AF0-V1	Microscope adapter

Fiber**Connect**®

Fiber optic assembly kits

Fiber optic assembly kit for F05/F07 connectors PCF

Fiber optic assembly kit with crimp tool

Order no.	Contents of the fiber optic assembly kit	
Z004-TA0-0,5-2,2	Stripper for 230 µm PCF conductors	
ZXXX-TN0	Kevlar scissors	
ZF0507-CC0-REN	Crimp tool for F05/F07 connectors – PCF	
ZF07-TW0	Cleave tool – PCF F05/F07	
00405402	Container for fiber off-cuts	
ZXXX-TL0	Card cleaner	
ZXXX-TF0-V1	Microscope, 100x magnification	
ZXST-AF0-V1	Microscope adapter for F05 connectors	

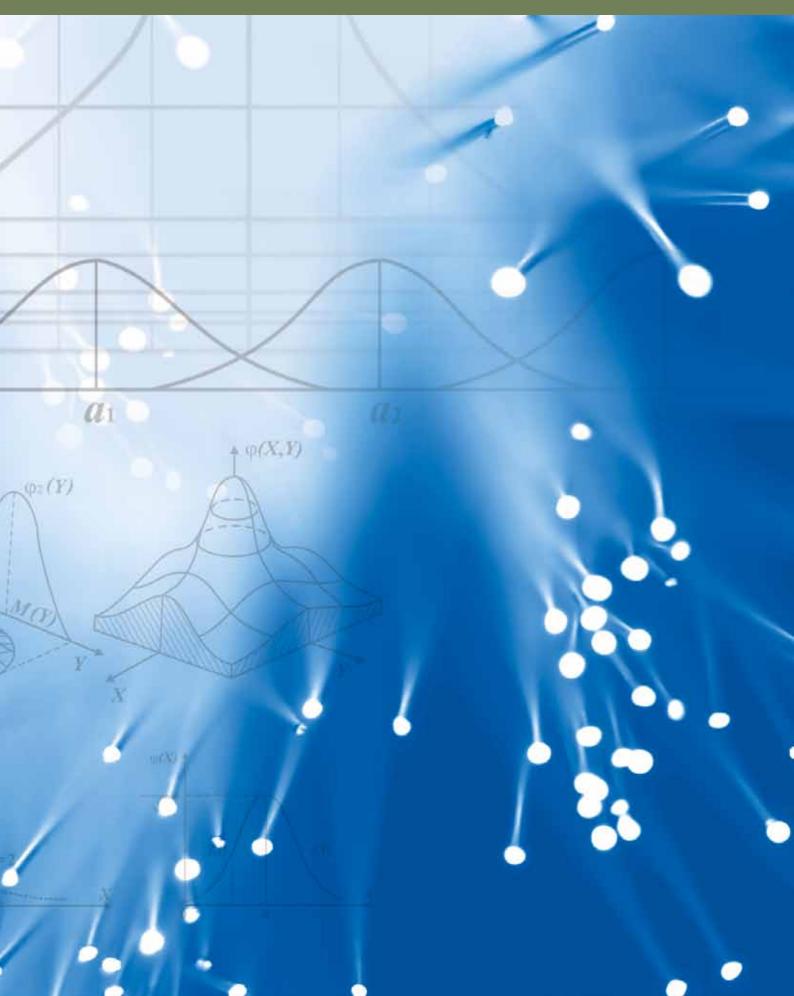
Order table

Suitable for following connectors	Order no.
Simplex F05 connector for PCF cables	
with buffered fiber Ø 2.2 mm	SF05-SC0-08-0010
Duplex F07 connector for PCF cables	
with buffered fiber Ø 2.5 mm	SF07-DC0-08-0010
Fiber optic assembly kit	ZF0507-KC0

242

Support

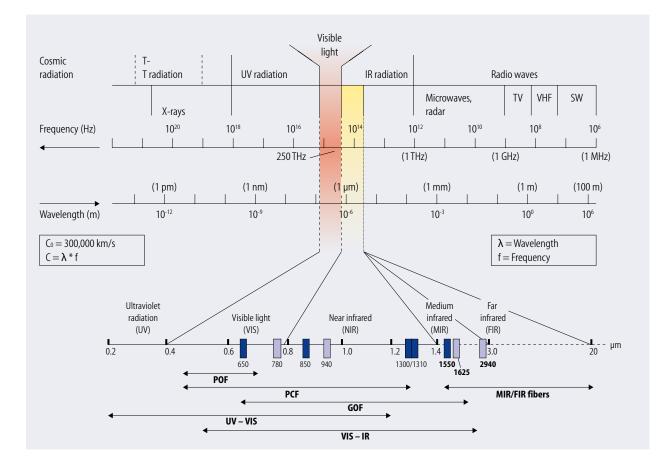
Fiber optic assembly kit for HP connectors PCF


Fiber optic assembly kit with crimp tool

Order no.	Contents of the fiber optic assembly kit
Z004-TA0-0,5-2,2	Stripper for 230 µm PCF conductors
ZXXX-TN0	Kevlar scissors
ZXHP-CC0	Crimp tool for HP connector V-Pin, PCF
ZXHP-TW0	Cleave tool – PCF HP
00405402	Container for fiber off-cuts
ZXXX-TL0	Card cleaner
ZXXX-TF0-V1	Microscope, 100x magnification
ZXHP-AF0-V1	Microscope adapter for HP connectors

Order table	
Suitable for following connectors	Order no.
Simplex HP connector for PCF cables	
with buffered fiber Ø 2.2 mm, compatible	SXHP-SC0-32-0010
with HP HFBR 4521 and V-Pin 200S	
Duplex housing for two Simplex connectors	SXHP-DC0-32-0010
Fiber optic assembly kit	ZXHP-KW0

Principles

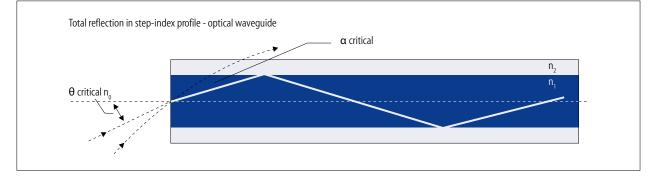

of fiber optics technology

1. Optical waveguides in general

1.1. Spectrum of light

Light travels as an electromagnetic wave through a vacuum at a speed of $c_0 = 299,792.458$ km/s. The spectrum of light spans a wide range from deep ultraviolet (UV) (wavelength $\lambda = 100$ nm) to the infrareds (IR) ($\lambda = 200$ mm), although visible light only occupies the range from 380 nm to 780 nm. Different types of optical waveguides are used at different wavelengths depending on their transmission properties. The majority of waveguide applications extends from the near UV (300 nm and above) to the low IR range. In a homogeneous medium, light travels in a straight line and is described by the laws of geometric optics. Geometric optics can also be used to explain the propagation behaviour in large waveguide structures, where there are many possible directions in which the light can travel (see Chapter 1.2.). However, as waveguide structures become ever smaller, the propagation of light can only be explained in terms of wave theory. The following chapters will describe the fundamental physical properties of those waveguide components manufactured by LEONI.

Principles

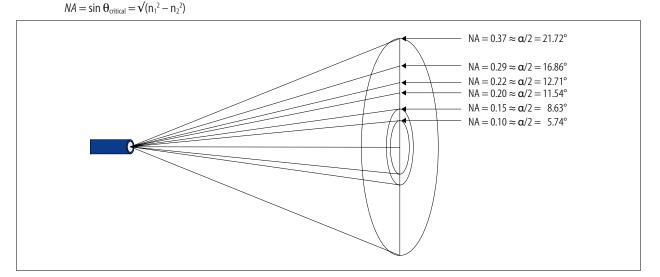

1.2. Propagation of light in an optical waveguide

The basic principle of transmission in an optical waveguide is based on total internal reflection. When a light ray hits the boundary surface between a more optically dense medium with the refractive index n_1 and a less optically dense medium with the refractive index n_2 , the ray is either refracted or totally reflected, depending on the angle of incidence α .

$\sin \alpha \, / \sin \beta = n_1 \, / \, n_2$

 $(\alpha = angle of incidence, \beta = angle of reflection, n_1 = refractive index of the more optically dense medium, n_2 = refractive index of the less optically dense medium)$

At the transition between the more optically dense medium and the less optically dense medium, the ray is refracted away from the perpendicular and a portion of the light, which increases with an increasing angle of incidence, is reflected at the boundary surface. The greater the angle at which the ray of light strikes the boundary is, the closer the refracted ray is to an angle of $\beta = 90^{\circ}$ towards the perpendicular of incidence. With an even greater angle of incidence of the light ray, instead of being refracted the ray is totally reflected. Above a certain angle the ray of light is reflected in its entirety; this angle is known as the critical angle of total internal reflection. The actual size of the critical angle of total internal reflection is a function of the difference between the refractive indices of the more optically dense medium and the less optically dense medium.


1.3. Numerical aperture

The numerical aperture is a crucial variable for the coupling of light into an optical waveguide. It is calculated from the difference between the refractive indices for the core and the cladding.

The numerical aperture NA is calculated using the sine of the critical angle θ_{critical} as follows:

Only those rays of light that enter the fiber within a certain range of angles $\leq \theta_{\text{critical}}$ are guided along the fiber.

Typical values of the NA for commercial fibers are in the range from 0.1 to 0.5, corresponding to an acceptance angle of between 6 and 30°.

Typical acceptance angles of commercial glass fibers

1.4. Under-excitation, over-excitation

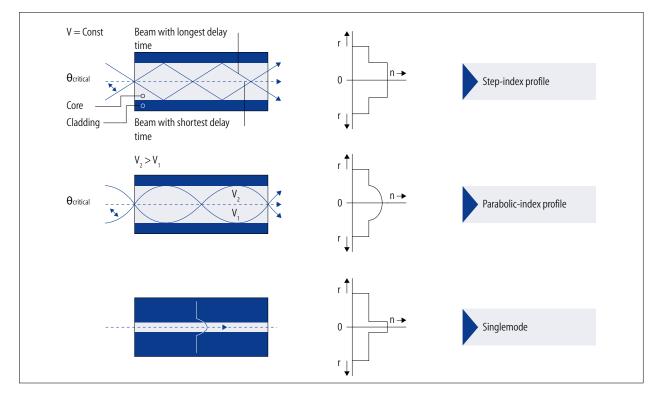
When light is launched into an optical waveguide, it often occurs that not all modes are excited equally. The critical angle or diameter of the incident ray often differs from the fiber parameters. Part of the ray which has an angle greater than the critical angle leaks out of the fiber and power is lost. This is known as over-excitation. In contrast, under-excitation is when the angle is smaller than the critical angle, i.e. the crosssection of the ray is smaller than the diameter of the core. When using gradient-index fibers (see Chapter 2.1.3.), marginally greater path attenuation values are achieved even with under-excitation.

1.5. Joining two fibers

Two fibers can been joined together either by connecting the end faces of two fibers permanently, known as splicing, or by connecting two connectors in a coupling. Two identical connector types can be joined in a standard coupling and two different connectors can be joined in a hybrid coupling. The connection with the least influence (attenuation) on the guided light is a 'fusion splice', in which the two fiber ends are precisely aligned and then fused together using an electric arc.

2. Fiber types

In LEONI's product portfolio, a basic distinction is made between two types of fiber optic component: a) components in which the light is guided by an isolated fiber, and b) components in which the light is guided by a bundle of fibers. Individual fiber components also include components in which multiple buffered fibers are assembled in one cable. Individual fibers will be described first in the following sections, although certain fundamental properties also apply to fiber bundles. This will be followed by a specific description of the properties of fiber bundles.


2.1. Individual fibers

The illustration below shows the most important basic types of optical fiber:

- Multimode fiber with step-index profile
- Multimode fiber with gradient-index profile
- Singlemode fiber

The most commonly used singlemode fiber is the telecommunication fiber, which has a mode-field diameter typically of 9 to 10 µm and a cladding diameter of 125 µm. The light is guided primarily in the mode-field diameter, but with a small part being guided outside the actual core in an area of the cladding close to the core. The mode-field distribution corresponds to a Gaussian curve. The actual core diameter is usually 8.2 µm with a NA of 0.14. The singlemode transmission properties of a standard telecommunication fiber span a spectral range from 1280 to 1650 nm. The critical wavelength from which on a second mode is capable of being propagated is called the cut-off wavelength and is approximately 1260 to 1280 nm for a standard telecommunication fiber.

Utmost cleanliness of the fiber material (fused silica glass/doped silica glass) is a priority during the manufacture of standard telecommunication fibers in order to achieve maximum transmission. The typical attenuation of a modern singlemode fiber for telecommunications is 1310 or 1550 nm at <0.05 dB/km, meaning that signals can be transmitted over distances

2.1.1. Singlemode fibers

In a singlemode fiber (also known as a mono-mode fiber) the signals are transferred by transmitting the light only in the fundamental mode (mono or single mode), as this is the only mode capable of being propagated and all other modes are guided.

Singlemode fibers are preferred for applications involving long distances and wide bandwidths, as they provide the least amount of signal distortion.

of more than 100 km without amplification. A further development of the standard singlemode fiber is the so-called 'low-water-peak fiber' (ITU-T G.652.C and G.652.D). With these fibers it is possible to transmit data in the wavelength range between 1310 and 1550 nm without loss because special production methods have resulted in a particularly low water content of the fiber, which suppresses the substantial absorption due to OH vibrations in this wavelength range. These fibers open up the E-band (extended band) for data transmission. This range is largely made available through CWDM technology (Coarse Wave-

Principles

length Division Multiplexing), which makes it possible to use low-cost lasers for transmission due to the large wavelength spacings.

The singlemode fibers used for wide area networks are non-zero-dispersion fibers (ITU-T G.655.C). They have a very low attenuation and dispersion in the C-band around 1550 nm. This permits longer lengths without the need for dispersion compensation.

Singlemode fibers for other wavelength ranges are also commercially available. The mode-field diameters of fibers for the near IR range and the visible wavelength range (VIS), in particular, are becoming smaller and smaller.

These fibers are suitable for an array of special applications requiring transmission with an excellent ray quality. Generally speaking, the low attenuation over long distances is not a critical requirement for such applications.

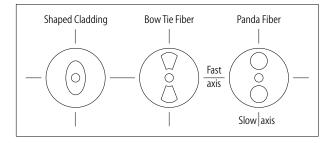
2.1.2. Multimode step-index fibers

With multimode step-index fibers many modes are guided in the core due to the larger core diameter and/or correspondingly high Δ n between the core and the cladding compared with singlemode fibers. The range of variation of such fiber types is huge. The main types, which also are of corresponding industrial significance, are listed below:

Optical waveguide	Core material	Cladding material
POF	РММА	Fluorinated PMMA
PCF	Fused silica glass	Plastic (acrylate)
Silica fibers (low OH, high OH)	Fused silica glass	Fused silica glass
Glass fibers	Fused silica or composite glass	Doped silica or composite glass
MIR fibers	Special glass (fluoride glass, chalcogenide glass)	Special glass

The modal dispersion of step-index multimode fibers is considerable due to the different delay times.

2.1.3. Multimode gradient-index fibers


A graded refractive index together with increasing germanium doping towards the centre of the core minimises the differences in delay times for all modes and thus provides a substantial improvement in the bandwidth. The profile of the refractive index in the core is almost parabolic. These fibers bring about improvements for greater bandwidths in certain wavelength ranges.

2.1.4. Spectral properties of low OH/high OH

Owing to the OH vibrations, the water content of the fiber determines the absorption behaviour. A low-OH fiber has low attenuation values in the near infrared range and is consequently used in that range. A high-OH fiber reduces the formation of imperfections for irradiation in the ultraviolet range. Low and high-OH fibers are available in particular in the form of step-index silica fibers. They are used for power transmission in laser applications as well as in the detection of radiation in sensor systems, for example.

2.1.5. Polarisation-maintaining fibers

A polarisation-maintaining fiber is a special type of singlemode fiber. Stress elements in the cladding create birefringence in the core for retaining the polarisation of the light guided in the fiber. There are three different types of polarisation-maintaining fiber, which differ in terms of the shape of the stress elements in the fiber.

The core diameters of the fibers correspond to the respective diameters of the standard fibers. Both 80 μ m and 125 μ m are standard cladding diameters, with the smaller cladding diameter having less influence on the polarisation with small bending radii.

2.1.6. Coatings and buffers

Optical waveguides made from silica or plastic need to be protected mechanically and from moisture. Coatings and buffers are used for providing protection. Acrylates are usually applied as the coatings. For special applications, the fibers are coated with polyamide, PTFE, silicone rubber or high-temperature acrylate. Glass fibers for special applications can also be coated with a metal to make them suitable for soldering.

2.1.7. Bending radii

Fiber optic cables can only be bent by a certain amount before the fibers will break. When subjected to a specific mechanical load, the glass fibers may tear or rupture completely. For this reason manufacturers specify a minimum bending radius, which is likely to ensure a long service life if observed. The probability of a fiber breaking depends on the manufacturing parameters, the cladding diameter and the dwell time. Its quality is tested by a proof test of the fiber bundle, in which the fiber is laid around a narrow radius and subjected to a specified force.

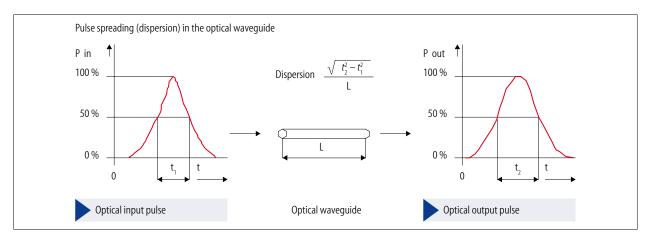
Generally speaking, the bending radius – the curvature of the individual fiber – should be no smaller than a factor of 600 x d_{core} . With a 600-µm single fiber, the minimum bending radius is therefore 36 cm.

2.2. Signal transmission in optical fibers

The transmission of signals containing large quantities of information (digital or analogue signals) requires the fiber to have particular transmission properties in order to achieve a transmission that is largely free of errors even over longer distances and with wide bandwidths.

2.2.1. Dispersion and profiles

The quality of the optical transmission system is not only affected by the distance to be covered but also by the data rate that can be transmitted. High data rates require wide-band transmitter and receiver components but also wide-band optical fibers (not to be confused with the optical bandwidth, which defines the range of light wavelengths). The bandwidth of an optical fiber is limited by the dispersion, i.e. by the fact that a pulse that has been injected into an optical fiber broadens in the fiber while it is being transmitted.


The transmission property of a fiber is largely determined by the following parameters: With multimode fibers, the bandwidth-length product of the particular fiber characterises the respective transmission property. For a Gaussian-shaped pulse:

$$B^*L \approx 0.44 / \Delta t^*L$$

With singlemode fibers, there is also a noticeable distortion of the optical signals caused by the scattering of the delay time (dispersion). Dispersion is caused by:

- Reduction in the slope rate and overlapping of pulses increase the bit error rate and decrease the bandwidth
- Modal dispersion due to different delay times
- Material dispersion due to the frequency dependence of the refractive index (transmitter emits light at more than one wavelength); the various wavelengths propagate at different speeds (minimum approx. 1300 nm)
- Profile, waveguide, polarisation and chromatic dispersion.

Chromatic dispersion of a singlemode fiber is expressed in ps/nm*km. Its value is a function of the wavelength and has a zero-crossing point of around 1310, for example, depending on the design of the fiber.

The table below lists typical signal transmission properties for common fiber types:

	POF	PCF		Glass fiber	
Mode type	Multimode	Multimode	Multimode	Multimode	Singlemode
Fiber type	Step index	Step index	Gradient index	Gradient index	Step index
Core diameter [µm]	980	200	62.5	50	8
Cladding diameter [µm]	1000	230	125	125	125
Numerical aperture	0.5	0.37	0.27	0.20	0.13
Attenuation coefficient → 650 nm [dB/km]	160	10	10	10	-
Attenuation coefficient → 850 nm [dB/km]	2000	8	3.2	3.0	-
Attenuation coefficient \rightarrow 1300 nm [dB/km]	-	6	1.0	0.9	0.35
Typical wavelength used	650	650/850	850/1300	850/1300	1310/1550
Bandwidth-length product [MHz*km]					
→ 650 nm	1	17			
→ 850 nm	-	20	200	400	
→ 1300 nm	-	20	600	1200	
Chromatic dispersion →1310 nm					3.5 ps/km*nm
Chromatic dispersion →1550 nm					18.0 ps/km*nm

There is a wide variety of fibers available on the market with a correspondingly wide range of specifications.

2.2.2. Attenuation and transmission

The optical power P decreases exponentially as it passes through an optical waveguide with length L.The optical power surpasses many powers of ten, and for this reason it is common to use logarithmic notation and to specify the attenuation A in decibels (dB):

$$A = -10 \log P_0 / P_L$$

where P_0 is the optical power in mW at the beginning of an optical waveguide and P_L is the optical power in mW at the end of an optical waveguide. For the attenuation coefficient α (kilometric attenuation) where

 $\alpha \,{=}\, \text{A}\,/\,\text{L}$

this yields dB/km as the unit of measure. The power, based on 1 mW, has the unit of measure of dBm, in accordance with the following definition: $P = -10 \log (P / 1 \text{ mW})$

where P is the optical power in mW.

The transmission is the percentage of the light transmission in the fiber based on the injected power.

$$T = 10^{(-A*L)/10}$$

T = transmission

A = attenuation (db/km)

L = length of fiber (km)

Attenuation of the light in an optical waveguide is caused by: linear scattering at inhomogeneities in the molecular structure of the fiber core (Rayleigh scattering); a ~ $1/\lambda^4$, lowest value at $\lambda \approx 1.5 \,\mu$ m and scattering effects at optical inhomogeneities in the magnitude range of the wavelength (Mie scattering); these can be significantly reduced through technological measures

- Non-linear scattering (Raman and Brillouin scattering); dependent on power and wavelength
- Absorption as the result of excitation of the natural oscillation of molecules; OH groups cause problems in particular (as do heavy metals occasionally)
- Leakage of the optical power due to excessive bending of the fiber or due to microbends – microscopic bends and turns

2.2.3. Losses caused by bends

Bending a fiber creates a different combination of modes and some leakage of the higher-order modes out of the fiber. The smaller the bending radius, the greater the losses. Fibers with a low NA are generally more sensitive than fibers with a higher NA. The bend in the fiber can have a large cable curvature but can also be on a small scale, as can occur when installing the optical cable for example. Such small-scale bends are called microbends, which also contribute to an increase in the losses.

2.2.4. Connector loss or coupling loss

In addition to the length loss in the cable, loss occurs in the area of the connectors, i.e. in the transition between the connectors at the couplings. If the connector end faces touch or are less than a tenth of the light wavelength apart, the proportion of retroreflections from the interface between the air and the glass, which occurs with connectors with an air gap, decreases by around 8% (for fused silica glass, as a function of the refractive index). Such plug connections are known as connectors with physical contact. Absorption and scattering also occur as the result of surface flaws. Such flaws include scratches that were produced during the machining of the end faces as well as dirt resulting from improper handling of the connectors.

Connector types

- Flat connectors with an air gap SMA 905, SMA 906, HP high loss 0.4 – 1.5 dB high return loss –14 dB
- Connectors with physical contact (/PC) ST, SC, DIN, FDDI, ESCON, E2000, MU, LC, FC, Opti-Jack, D4, Mini-BNC, Biconic low loss 0.0 – 0.7 dB moderate return loss –20 to –50 dB
- Angle-polished connectors with an air gap VFO, HRL-11, EC/RACE high loss low return loss
- Angle-polished connectors with physical contact (/APC) DIN-APC, FC-APC, E2000-APC, SC-APC low loss lowest return loss < -55 db

Connectors with multiple fibers in one ferrule

MT, MP, MPO, MTRJ (SCDC, SCQC) up to 24 fibers in one ferrule high loss moderate to low return loss –20 to < -55 dB

Connectors with 1.25-mm ferrule

MU, LC, LX.5, F 3000 quick assembly high packing density low loss moderate to lowest (/APC design) return loss -20 to <-55 dB

Connectors without a ferrule

VF-45-Volition (SG), Optoclip quick assembly guidance issues

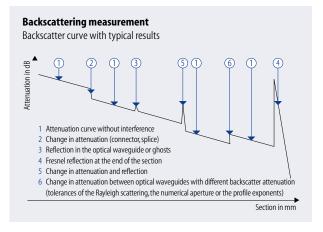
- Connectors with collimation optics lens connector low sensitivity to dirt (e.g. installed in ICE train)
- Optical fiber connectors with electrical plug connection in the same housing hybrid connector application-specific design

2.3. Attenuation measurements (standards)

There are various standards for measuring attenuation which apply specifically to the most commonly used fibers and applications.

The fiber loss is determined using either the direct-light method or the backscattering method. The basic properties of the two measurement techniques are explained in the chart below.

Direct-light method


POF, PCF + Glass

Total attenuation of a section Spatial separation of the measuring instruments Very accurate result No evaluation of interfaces No localisation of defects No distance measurement

Backscattering method

PCF + Glass

Total attenuation of a section Only connected at one end Technically tolerable result Evaluation of interfaces Localisation of defects Distance measurement OTDR measuring instruments, as are available commercially in various forms, are suitable for measuring a backscatter curve. The diagram below schematically shows a measured curve like those that can be plotted for a section of fiber using such instruments.

2.3.2. Direct-light measurement

With the direct-light technique, an optical waveguide with a length L [m] is connected to a light source having a defined wavelength of power P₀ [dBm]. The optical power P_L [dBm] at the end of the optical waveguide is then measured using a power meter. The power loss, i.e. the optical attenuation A [dB], is calculated from the difference between P₀ and P_L:

$$A = P_0 - P_L$$

If the path attenuation is much greater than the connector loss, the attenuation coefficient α [dB/m] can be calculated as follows:

$$\alpha = A/L = (P_0 - P_L)/I$$

The insertion loss method or cut-back method is usually used for measuring the optical power.

The various techniques of the insertion loss method are targeted at specific applications or quality criteria.

With patch cables that are connected directly to the transmitter and receiver, it is generally only necessary to compare these cables with a good reference cable of the same fiber, with the absorption value being calculated as follows:

$A = -P_{test} - P_{ref}$

In this case, the transmitter should have radiation characteristics typical of the application. This method is described in IEC 60793-1-40.

To minimise the influence of the transmitter, it is possible to work with a launching length, in which a mode scrambler generates a defined ray distribution in the fiber (IEC 61300-3-4 method B). The attenuation effect of the last connector is suppressed using these two methods. By contrast, if a lead-in and a lead-out length are used, as specified in IEC 61300-3-4 method B, the entire cable is tested by means of one single measurement.

The different test set-ups could result in different values in the order of 0 to approx. 2 dB, depending on the type of fiber and connector.

2.3.3. Attenuation measurement of glass and PCF assemblies per IEC 61300-3-4 method B

The optical power Ps in dBm at the end of the reference cable is determinded in a reference measurement.

Optical transmitter	 Coupling	 Optical level meter

Basic device with adapter or existing transmitter with permanent light

The reference with 5 windings can be eliminated.

The cable to be tested is inserted between the reference cable and the optical level meter by means of a coupling. The optical power PL in dBm is determinded.

	Cables to be tested					
Optical transmitter		Coupling		Coupling		Optical level meter

Basic device with adapter or existing transmitter with permanent light

Measurement 2 must be repeated after the cable under test has been rotated, as so far only the attenuation at the coupling has been calculated. The worse value of the two must be used. Attenuation A = PL - Ps [dBm].

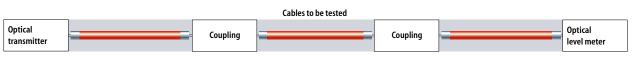
During the evaluation, a comparison is made with the allowable limit value for attenuation. The relevant standards, such as IAONA, specify an attenuation of 0.75 dB with MM and SM glass (standard) for a coupled connector pair.

The attenuation coefficient of the cable must be taken into account based on the length of fiber to be measured:

for glass MM 50/125	typ. 2.5 dB/km	at 850 nm
	typ. 0.7 dB/km	at 1310 nm
for glass MM 62.5/125	typ. 3.0 dB/km	at 850 nm
	typ. 0.8 dB/km	at 1310 nm
	typ. 10 dB/km	at 660 nm
	typ. 8 dB/km	at 850 nm

2.3.4. Attenuation measurement of glass and PCF assemblies per IEC 61300-3-4 method C

The optical power Ps in dBm at the end of the inserted reference cable is determinded in a reference measurement.


Optical transmitter		Coupling		Optical level meter
------------------------	--	----------	--	------------------------

Basic device with adapter or existing transmitter with permanent light

In order to largely eliminate cladding modes during the measurement, the launching and lead-out reference must have 5 windings around a mandrel with a diameter of approx. 20 mm.

The coupling is opened and the cable under test is inserted. The measurement of the optical power PL (in dBm) is then carried out at the end of the section.

Principles

Basic device with adapter or existing transmitter with permanent light

The attenuation at A = PL - Ps [dBm].

During the evaluation, a comparison is made with the permitted limit value for attenuation. The relevant standards, such as IAONA, specify an attenuation of 0.75 dB with MM and SM glass (standard) for a coupled connector pair.

The attenuation coefficient of the cable must be taken into account based on the length of fiber to be measured:

for glass MM 50/125	typ. 2.5 dB/km typ. 0.7 dB/km	at 850 nm at 1310 nm
for glass MM 62.5/125	typ. 3.0 dB/km typ. 0.8 dB/km typ. 10 dB/km typ. 8 dB/km	at 850 nm at 1310 nm at 660 nm at 850 nm
for PCF	typ. 10 dB/km typ. 8 dB/km	at 660 nm at 850 nm

2.3.5. Attenuation measurement of POF and PCF assemblies per IEC 60793-1-40 B

The optical power Ps in dBm at the end of the reference cable is determinded in a reference measurement.

Optical	Reference cable, see table (should correspond to the type of fiber to be measured)	Optical
transmitter		level meter

Basic device with adapter or existing transmitter with permanent light

The measurement of the optical power [PL] is carried out at the end of the cable to be tested having length L.

Optical	Reference cable, see table (should correspond to the type of fiber to be measured)	Optical
transmitter		level meter

Basic device with adapter or existing transmitter with permanent light

This yields an attenuation at $A = P_L - P_S$ [dB].

From this you can derive the attenuation coefficient $\alpha = PL/PS$ [dB/km] (L is the length of the cable under test in km).

Comparison with the allowable limit value:

Attenuation

The maximum allowable attenuation is given in the description of the system used. This must always be greater than the calculated attenuation A. You should always leave a safety margin of 3 dB.

Attenuation coefficient of cables

for POF typ. 230 dB/km at 660 nm for PCF typ. 10 dB/km at 660 nm typ. 8 dB/km at 850 nm

Reference cable for the attenuation measurement

Order number	Connector type	Cable type
KXST-XST 11001m	ST (BFOC)	POF
KSMA-SMA 11001m	FSMA	POF
KF05-F0511001m	F05	POF
KHPS-HPS11001m	HP	POF
KXST-XST72001m	ST (BFOC)	PCF
KSMA-SMA72001m	FSMA	PCF
KF05-F0572001m	F05	PCF
KHPS-HPS72001m	HP	PCF

Use this method if the assemblies are to be utilised for direct transmitter/receiver connections or the couplings are unsuitable for measurements.

Attenuation measurement – a straightforward method for use in practice

Tip

If you use PCF fibers in systems for POF (660 nm) and your system is not specified explicitly for PCF fibers, proceed as follows:

- Use a POF cable as the reference cable instead of a PCF cable
- Attenuation:
 - $A = P_L$ (PCF cable) P_S (POF reference)

During the evaluation, the maximum allowable attenuation specified for the system with POF must be greater than the attenuation determined in this way. Experience has shown this method to be one of the most reliable, but you cannot determine the attenuation coefficient in this way. It is better to use the transmitter that is built into the system (and not the transmitter described above).

2.3.6. Comparison of attenuation and transmission

In fiber optics, the terms attenuation and transmission are used when describing the power of an optical waveguide.

Attenuation

Attenuation describes the energy loss of the light ray as it passes along a fiber. Its value depends on the wavelength used and the length of the fiber. The attenuation value of a fiber is usually expressed in dB/km.

Transmission

Transmission describes the output power of an optical waveguide, taking the losses into consideration. It is given as a percentage of the injected power. The transmission is also dependent on the wavelength used and the length of the fiber. Transmission is expressed as a percentage.

Examples of converting attenuation into transmission

The attenuation value of a PMMA fiber is 150 dB/km. You need to work out the transmission value of this fiber at a length of 35m.

> $T = 10 (-A \cdot L)/10$ T = 10 (-150 dB/km · 0.035 km)/10 T = 0.29 = 29%

The attenuation value of a fiber of 6 dB/km signifies a transmission of 25% for 1 km of fiber.

$$T = 10 (-A \cdot L)/10$$

T = 10 (-6 dB/km \cdot 1km)/10
T = 0.25 = 25%

A = attenuation [dB/km]L = length of the fiber [km]T = transmission

Principles

2.4. Ageing

The ageing of fibers is usually associated with a deterioration in the transmission properties. In addition to the fiber ageing described here, signs of fatigue and wear also occur at the connecting systems.

2.4.1. Ageing of glass fibers

Material and environmental effects determine how quickly fibers age. Material inhomogeneities or flaws are present in fused silica glass and on the fiber surface. For example, mechanical stress from bending produces microfissures in the fused silica glass, which grow over time, possibly resulting in the rupture of the fiber. The cracks develop at a statistically distributed rate as these are defects with a statistical distribution. Mathematically, the probability of a breakage as a function of the optical fiber length L, the mechanical stress σ and time t is described by the Weibull distribution of fracture probability F:

 $F = 1\text{-}exp\{-L/L_0 \cdot (\sigma/\sigma_0)^a \cdot (t/t_0)^b\}$

The values with the index 0 denote the parameters for the reference test that was conducted. Parameters a and b must be calculated through experimentation.

During manufacture, the mechanical strength of the silica fibers is tested by the proof or screen test, whereby a specified mechanical stress is created by a weight on the fiber.

For fibers that are radiated with ultraviolet light or X-rays, ageing causes colour centres or defects which could result in a marked increase in attenuation, even to the extent of blackening. Special doped fibers with low ageing characteristics are available for radiationintensive applications.

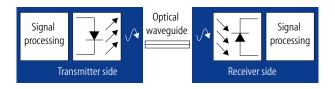
2.4.2. Ageing of POF

Temperature and moisture induce defects in plastic optical fibers, which manifest themselves through a rise in attenuation. With POF, the increase in absorption has been proven through the accumulation of OH ions, which causes an increase in attenuation as a function of the wavelength. Statistical statements can be deduced from test series, based on which the attenuation characteristic is measured over time at a particular ambient humidity (usually less than 95%) and temperature. The Arrhenius or William-Landel-Ferry theory is used for extrapolating the service life or the maximum continuous operating temperature. Based on all of these studies, it can be expected that a POF will last for 20 years at an operating temperature of 80 °C.

2.5. Fields of application

Optical fibers are now used in almost all areas of technology. The field of telecommunications has undoubtedly had a pioneering role and this sector and driven on by the ever growing demand for transmission capacity over the last three decades, has made considerable efforts to bring fiber-optic technologies to industrial maturity.

2.5.1. Applications


When used as a transmission medium, the different types of fibers are selected based on their properties and depending on the application.

	POF	PCF	Glass fiber
Electromagnetic compatibility (EMC)	++	++	++
Safety from interception	+	+	+
Risk in explosion-hazardous environments	++	++	++
Light weight	+	+	+
Flexibility	+	-	_
Small bending radii	+	0	-
Ease of assembly	++	+	
Bandwidth	+	+	++
Optical signal attenuation	_	+	++
Cost	++	++	to++

In the simplest scenario, a transmission link of optical fibers comprises:

- optical transmitter
- optical waveguide
- optical receiver

Schematic diagram of optical signal transmission

In telecommunications, the optical transmitter typically emits a power of less than 0 dBm. The receivers are usually sensitive in the range from -20 to -30 dBm.

Typical components:

- optical transmitter: LEDs or laser diodes (VCSEL advantage: little beam divergence, greater modulation rates compared with LED)
- optical receiver: PIN diodes or avalanche diodes

The wavelength ranges in which a fiber type exhibits particularly low absorption (attenuation) is called the optical window. The table below lists the optical windows for POF and glass fibers with the respective semiconductor materials used.

	Silicon (Si)	Germa- nium (Ge)	InGaAs
$\lambda = 520 \text{ nm}$ 1st opt. window, POF	Х	_	-
$\lambda = 570 \text{ nm}$ 2nd opt. window, POF	х	_	-
$\lambda = 650 \text{ nm}$ 3rd opt. window, POF	х	_	-
$\lambda = 850 \text{ nm}$ 1st opt. window, glass fiber	х	х	х
$\lambda = 1300 \text{ nm}$ 2nd opt. window, glass fiber	-	х	х
$\lambda = 1550 \text{ nm}$ 3rd opt. window, glass fiber	_	х	х

The criteria by which the most suitable fiber is selected will be explained with reference to a few examples.

For example, in an optical bus system in a car, the most important factor is that the garage technicians are able to perform simple repairs on the fiber system used without first having to undertake extensive specialist training. For this reason and because of the cost, the POF is the preferred fiber for this application.

However, the exceptional ray quality at the output of a PM fiber for the visible range of light is utilised for the precision illumination of a cell for examination under a fluorescence microscope.

Fibers with a moderate to large core diameter made from very pure fused silica glass are used in the transmission of power for material processing to ensure that there is no degradation of the fiber due to the high energy density.

Principles

3. Cables

The fibers described in Chapter 2 (physical principles) respond very sensitively to mechanical stress such as tensile, bending and torsional stress through large increases in attenuation. They are also not able to cope with harsh environmental conditions, such as weathering, chemical stress and abrasion. It is therefore absolutely essential to protect the fibers by means of a suitable cable structure.

3.1. Buffered fibers

A first protective layer – the coating or more precisely the primary coating – is applied when the glass fibers are manufactured. The primary coating usually consists of a two-layer UV-hardened acrylate. It protects the fibers, preventing them from absorbing moisture and thus becoming brittle until cabling takes place.

The fibers with the primary coating are provided with a further protective coating in a first cabling stage. This intermediate product is called a buffered fiber. Buffered fibers are therefore the basic component of a fiber optic cable, which can then be combined, by stranding, to form a cable core. The protective coating applied to the intermediate product or buffered fiber is known as the secondary coating.

According to VDE 0888 there are three distinct types of buffered fiber construction:

A. Multi-fiber loose tubes are buffered fibers in which multiple fibers are all surrounded by one secondary coating. The secondary coating around the buffered fibers is applied as a loose tube which is filled with a gel. The purpose of the gel is to gently embed the fibers and provide the maximum freedom of movement for the fibers when the cable is bent or pulled. For this reason, the buffer gels have to have a viscosity that is as constant as possible over the cable's entire operating temperature range so that they do not freeze or leak out. The fibers must be colour-coded in order to identify them. Multi-fiber loose tubes are usually made with 2, 4, 6, 8, 10, 12, 16, 20 and 24 fibers. The buffer tube surrounding a multi-fiber loose tube may be manufactured in a single layer of plastic or two layers of different plastics. At present, single-layer multi-fiber loose tubes are primarily made from polyester. Two-layer buffer tubes have the advantage that mating materials can be chosen which more or less combine the advantages of two plastics and offset the disadvantages in the properties of an individual plastic. The combination of polyamide/polyester or the combination of polycarbonate/ polyester (inner layer/outer layer, respectively) is used for manufacturing two-layer multi-fiber loose tubes. Two-layer loose tubes have lower thermal coefficients of linear expansion and are significantly more resistant to kinking than multi-fiber loose tubes having a single layer. One important production parameter during the manufacture of

multi-fiber loose tubes is the ratio of the length of fiber to the length of the buffer tube. In order to mechanically isolate the fibers, the multi-fiber loose tube must be constructed in such a way that the fiber is always slightly longer than the buffer tube. This is known as the fiber excess length. It is achieved by introducing the fibers helically into the loose tube. The fiber excess length must be kept constant along the entire length of the loose tube and within a very narrow tolerance of a fraction of a thousandth. This is to protect the fibers against the tensile forces acting on the buffer tube and also to prevent unacceptably small bending radii of the fibers when the buffer tube contracts at low temperatures.

B. Plastic tubes are buffered fibers in which just one fiber is surrounded by a buffer tube. Otherwise, in principle they have the same design features as multi-fiber loose tubes. They provide the fiber with a large interior space which enables the fiber to embed itself loosely in a gel, ensuring a specific fiber excess length. This makes the plastic tube ideal for constructing cables for a wide range of operating temperatures, resulting in almost no increase in the attenuation of the fiber.

C. Tight buffered fibers are buffered fibers in which just one fiber is surrounded by a buffer tube. Unlike plastic tubes, the buffer tube has a much smaller outside diameter which is adapted specifically to commercial connectors. Standard dimensions of these are, for example, 0.9 ± 0.1 mm or 0.6 ± 0.1 mm. There are many different types of tight buffered fibers: With a tight jacketed fiber the buffer tube is applied directly onto the fiber's primary coating, without providing the fiber with any space or room to move. It is also possible to apply a buffer, made of a UV-hardened acrylate, for example, between the fiber's primary coating and the thermoplastic buffer tube. The structure of a tight jacketed fiber usually permits only relatively short stripping lengths of up to a few centimetres. It is primarily used when assembling with machines, as the fiber cannot be pulled out of the jacket when it is being stripped automatically. Another type is the compact or semi-tight **buffered fiber**. With this design, there is still a small space between the fiber and the inside diameter of the buffer tube. The gap can be filled with gel or simply left hollow, i.e. filled with air. The advantage of this type of buffered fiber is that it is possible to strip extremely long sections of the buffer tube from the fiber, up to 2 m at once. For this reason, the design is usually used for manufacturing pigtails; these have one pre-assembled end and are spliced onto another installed cable by the other end of the fiber which is placed in a splice tray. Another advantage is that they are easy to work with when assembling manually. Because tight buffered fibers have a small outside diameter, there is very little or no excess fiber length compared to the length of the buffer tube, which means they are very sensitive to tensile stress and thermal

contraction and respond to these with increases in attenuation. **D.** In addition to the round buffered fibers described above, another type of structure is the **ribbon cable design**. Between 2 and 12 fibers are joined together in parallel in one flat jacket. This design, which is used predominantly in American and Asian countries, frequently makes use of UV-hardened acrylates for the jacket material. The ribbon cables can sometimes cause difficulties when laying in tight installation casings as they are relatively rigid in the transverse direction. There is also a danger that the coating will be damaged when separating the fibers.

Standard diameters of buffered fibers are:

Multi-fiber loose tubes for stranded cable constructions	
having 2 fibers	2.0 mm
Multi-fiber loose tubes for stranded cable constructions	
having 4 to 12 fibers	2.4 mm
Multi-fiber loose tubes for central constructions	
having 2 to 12 fibers	3.5 mm
Multi-fiber loose tubes for central constructions	
having 16 to 24 fibers	4.0 mm
Plastic tubes	1.4 mm
Tight buffered fibers	0.9 mm
Mini tight buffered fibers	
for small form factor connectors	0.6 or 0.5 mm

3.2. Cable structure

The buffered fibers described above represent the basic components of cable constructions. The design of the cable must take into account the individual requirements of the cable's field of application. In other words, it must ensure that the fibers are protected from tensile forces and other mechanical stresses, chemical media in the environment and thermal stresses.

First of all, round cables are split into two different designs: cables with a central buffered fiber, and stranded cables. Central cables have just one buffered fiber directly in the centre of the cable. Stranded cables have multiple buffered fibers and possibly also buffer or dummy elements which have been twisted in layers around a central element to achieve better cable flexibility. The twisting also prevents the buffered fibers or fibers from bunching up on one side of the central axis when the cable is bent, which would cause them to become compressed or stretched. Furthermore, the buffered fibers can slip and move slightly in the stranded structure in relation to the longitudinal direction along the helix of the stranding. This minimises or even completely compensates any tensile or compression stress caused by bending the cable. The size of the cable lay, i.e. the length corresponding to precisely one 360° turn of the strand elements, is particularly important. A large lay length permits only large bending radii of the cable. However, if the lay length is too small, the radii of curvature of the strand elements in the helix will be too small and generate attenuation losses. A suitable compromise must be chosen between these two effects.

A distinction is made between two types of stranding: continuous stranding, when the stranding direction of the buffered fibers does not change; and SZ stranding, when the direction of stranding reverses at short intervals. SZ stranding is used as an energy-saving and cost-effective process for permanent cable installations and continuous stranding is preferred for cables that are constantly moving.

A GRP element (glass-fiber reinforced plastic) is used as the central element for the stranding. The GRP element serves as a strength and support member and prevents the cable from contracting too greatly in the event of low ambient temperatures, thus also preventing an increase in the fiber attenuation.

Film or fleece tape can be applied around the central buffered fiber or the stranded structure to stabilise the structure or to provide better separation between the outer jacket and the strain relief elements. This complete structure, without the outer jacket, is called the cable core. The cable core usually also contains a manufacturer's tracer thread for identifying the manufacturer of the cable and a length measuring tape for accurately determining the length of the cable.

A distinction is made between indoor cables (which are designed specifically for the requirements of installing in buildings), outdoor cables (which are constructed specifically for use outdoors) and universal cables (which satisfy the requirements both for buildings and for outdoors) based on the installation site or the type of cable. For outdoor applications, the core of the cable is often made longitudinally watertight by means of a core filler in the cavities or swellable threads or ribbons. Consequently, if the cable jacket is damaged, any water that seeps into the cable is prevented from spreading along the entire length of the cable.

The choice and size of the cable jacket are crucial. It must enclose the cable core to keep it watertight and, as the boundary layer to the environment, it must be able to withstand all environmental influences. There is no jacketing material that can withstand all conceivable environmental influences. For this reason, the choice of jacketing material must be tailored to the specific conditions in which the cable is to be used. The following materials are used as the jacket for fiber optic cables:

- Non-halogen, flame-retardant materials (type rating H), which above all have to comply with stringent fire prevention requirements, are preferred for network cables in buildings. These materials are generally less effective at protecting the cable core from moisture and chemical media, but this is less important in buildings.
- Polyethylene (type rating 2Y) is used as a jacketing material for cables that are used outdoors, i.e. underground, underwater or overhead. This material offers the best protection against moisture and, when combined with a carbon filler, against the destructive effects of UV radiation. However, this type of material does not meet fire prevention requirements.
- Polyvinyl chloride (PVC, type rating Y) for cables with greater requirements with regard to resistance to chemical media in industrial settings.
- Polyurethane (type rating 11Y) for cables that are designed for continuous movement, e.g. in cable carriers, and are subject to extreme mechanical stresses, such as abrasion and crushing pressure, and are resistant to oil.
- Polyamide (type rating 4Y) if the cable requires a very hard jacket that can slide easily or needs to be designed to be very rigid.
 A polyamide jacket also serves as protection against termites and rodents.
- Fluorines (type rating 7Y) if the cable has to be designed for particularly high temperatures or chemical resistance.
- Various other jacketing materials that are based on the chemicals listed above and have been improved through additives or stabilisers for specific stresses or resistances. Nowadays the chemical industry is continually developing new custom-made plastics for special applications. Generally, however, these new developments have some shortcoming or other (even if it is just the price) which will limit their use to certain fields of application.

Fiber optic cables are frequently installed in ducts or in buildings where they are likely to be damaged by rodents. There are therefore a number of different technical solutions available for protecting them from rodent damage. Non-metallic types of rodent protection have the advantage that they are usually cheaper, lighter in weight, more flexible and require no special precautions against being accidentally energized when installing the cable.

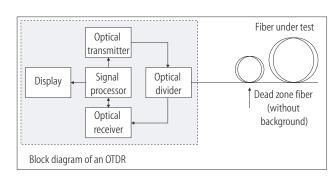
One of the simplest designs of non-metallic rodent protection is glass rovings under the jacket. The glass rovings provide two different functions: a strain relief and rodent protection.

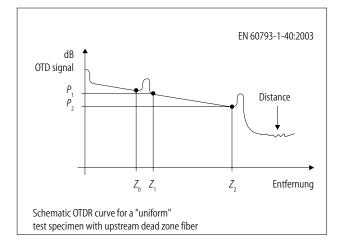
Another type of rodent protection is a hard polyamide jacket or encasing in GFR elements.

Metal forms of rodent armouring are much more effective. These include, for example, designs with smooth, loosely wound, zinc-coated steel tapes or corrugated steel tapes provided under the jacket. Undisputedly, these solutions provide the best protection for the cable, but make it thick and heavy at the same time. Furthermore, the metal elements mean that the cable is no longer galvanically isolated.

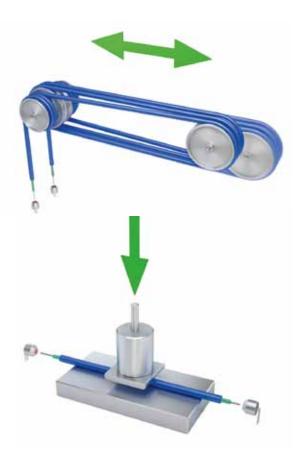
For underwater and mine applications, much more sophisticated armouring is used to protect the cable from harsh stresses. For example, the cables are wrapped in zinc-coated steel round wires, which are in turn encased in another protective plastic coating.

For effective protection against the ingress of water into the cable core, a film of aluminium at least 0.15 mm thick can be provided under the jacket as a diffusion barrier. This film is permanently bonded to the jacket.


3.3. Tests on cables


The standards listed below are relevant for testing the properties of fiber optic cables:

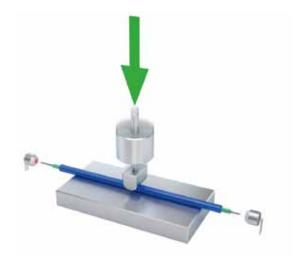
3.3.1. IEC 60793-1-40 Measurement methods and test procedures


Attenuation

Method C, the backscattering method, is usually used for all glass fibers in a cable factory. An optical time domain reflectometer (OTDR) is used in this method. The advantage of this test is that only one end of the cable is required. The device under test is connected to the measuring instrument by means of a launching fiber.

3.3.2. IEC 60794-1-2 For testing mechanical properties and environmental tests

Method E1: Tensile test


The test procedure investigates the attenuation of the fibers in the cable in the event of tensile forces which can occur while installing or operating the cable. Alternatively, the fiber extension can also be tested.

Method E3: Cable crush test

This test determines the ability of a fiber optic cable to withstand crushing pressure.

To do this, the test object is crushed for a specified time under a predetermined force between a flat steel base plate and a moving steel plate that is 100 mm long plus an edge radius of 5 mm.

Alternatively, one or more steel mandrels 25 mm in diameter can be inserted at right angles into the specimen. The optical transmission of the fibers (breakage) or the increase in attenuation of the device under test is monitored during and after the test.

Method E4: Cable impact test

The test determines the ability of a fiber optic cable to withstand one or more impacts. The device under test is placed on a flat steel plate and subjected to a specified drop energy (can be determined via mass and height of drop). The following must be specified for the test:

- Drop energy
- Radius of the drop hammer
- Number of impacts
- Temperature during the test
- Frequency of impacts

The optical transmission of the fibers (breakage) or the increase in attenuation of the device under test is monitored during and after the test.

Method E6: Repeated bending

The test determines the ability of a fiber optic cable to withstand repeated bending.

During this test, the device under test is bent by \pm 90° (i.e. 180° from end position to end position). The following must be specified for the test:

- Number of cycles
- Bending radius
- Tensile load

The optical transmission of the fibers (breakage) or the increase in attenuation of the device under test is monitored during and after the test.

Method E7: Torsion

The test determines the ability of a fiber optic cable to withstand mechanical twisting.

The device under test is clamped by two clamps and twisted by $\pm 180^{\circ}$ (i.e. by 360° from end position to end position).

The following must be specified for the test:

- Twisted length
- Number of cycles
- Tensile load applied

The optical transmission of the fibers (breakage) or the increase in attenuation of the device under test is monitored during and after the test.

A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWNER OWN

Method E8: Flexing test

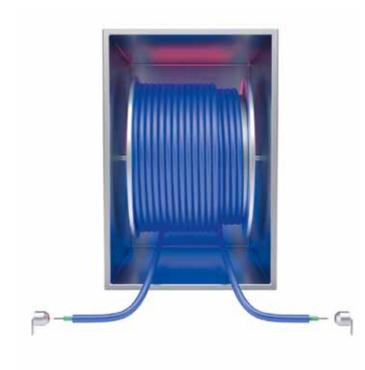
The test determines the ability of a fiber optic cable to withstand repeated bending during operation (e.g. in the case of an elevator cable).

The device under test is guided over two pulleys in the shape of an S and loaded by a weight on both sides. The pulleys are located on a moving carriage, which carries out an alternating translational movement.

The following must be specified for the test:

- Diameter of the pulleys A and B
- Length of displacement path of the carriage
- Number of cycles
- Mass of the weights attached (tensile load applied)

The optical transmission of the fibers (breakage) or the increase in attenuation of the device under test is monitored during and after the test.


Method E11A: Cable bend

The purpose of this test is to determine the ability of a fiber optic cable to withstand bending about a test mandrel.

The device under test is wound tightly in a coil around a mandrel and then wound in the opposite direction. The following must be specified for the test:

- Diameter of the test mandrel
- Number of cycles
- Number of windings
- Test temperature

The optical transmission of the fibers (breakage) or the increase in attenuation of the device under test is monitored during and after the test.

Method F1: Temperature cycling

This test procedure examines the stability of fiber attenuation of a fiber optic cable over the permitted temperature range for its particular use and also for its storage and transport.

Because of the different coefficients of expansion of the structural cable materials as well as certain shrinkage effects of the plastics under thermal stress, the fibers are subjected to compression or tensile stress which can cause considerable increases in attenuation if the cable design is not ideal.

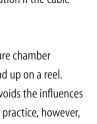
The test is usually carried out in a large temperature chamber on an entire factory length as a loose coil or wound up on a reel. Loose coils are preferred where possible, as this avoids the influences due to the coefficients of expansion of the reel. In practice, however, it is often not possible to wind suitably long lengths of relatively thick cables as a loose coil.

The following must be specified for the test:

- Number of cycles
- Limit temperatures to be approached
- Dwell times at the temperature
- Rate of change in the temperature

Any changes in attenuation in the device under test are monitored during and after the test.

Method F5: Longitudinal watertightness


This test determines whether a cable is capable of stemming the migration of water along a defined length in the event the cable jacket is damaged.

The test specification differentiates between test procedure A, in which the water is able to penetrate into the cable core radially through a section of removed jacket and test procedure B, in which the water is able to penetrate into the entire cross-sectional area of the cable.

The following must be specified for the test:

- Sample length
- Duration of the test
- The method used, A or B

The standard test parameters are: 24 hours · 3 m of cable · 1 m water column

3.3.3. Fire prevention

Consideration of application and fire prevention criteria: The jacket around the buffered fiber or cable is designed to protect the fiber(s) from the effects of mechanical, thermal and chemical action as well as the ingress of moisture. In the event of a fire, however, the cable jacket should prevent a fire from spreading and stop toxic and corrosive gases from being produced.

The use of non-halogen, flame-retardant materials is advisable in order to protect equipment and buildings but above all to protect people. In harsh industrial environments, PUR and PVC, in particular, are used owing to their high resistance to oils and their abrasion resistance. PE is also commonly used as a jacketing material for outdoor applications. However, it is often extremely difficult to meet all the requirements using just one jacketing material. To best satisfy the prevailing local operating conditions, LEONI offers the user a choice of four standard materials. Please contact us if the criteria for your particular application are not met by the cable structures in this catalogue. Additional requirements can often be met through customised measures when making the jacket (e.g. aluminium tape or special blends of materials).

While in theory the cables will last a lifetime, in day-to-day operation they may be destroyed by malfunctions or outside influences.

Destruction by fire is a particularly critical situation. In addition to the loss of the cable functions, toxic and/or corrosive substances may be released when any non-metallic cable components, such as the insulation, jacket and films, start to burn. Toxic substances will immediately affect anybody in the vicinity of the fire, whereas corrosive by-products of a fire and their effects cannot always be detected immediately. It often takes weeks or even months before such byproducts of the fire, dissolved in the extinguishing water or in the atmospheric moisture, start to corrode metals. Fire damage can occur even at sites located some distance from the source of the fire itself. All fiber optic cables for indoor cabling in this catalogue are listed in the FRNC (LSFROH) version.

- NC non corrosive
- LS low smoke OH zero halogen

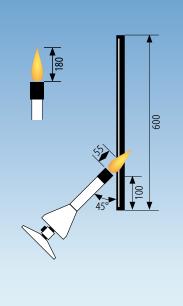
Summary of the advantages of FRNC cables:

- cables themselves do not propagate the fire
- combustion gases have relatively low toxicity
- combustion gases have no corrosive effect
 no dioxins in the fire residue
- no dioxins in the fire
 minimum smoke

Fire testing and determining the combustion products resulting from a fire are therefore crucial in cable technology. They provide information about how fires spread through cables and about the potential hazards for man and materials in the event of a cable fire.

The corresponding tests investigate:

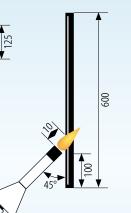
- the flammability of non-metallic cable components
- the toxicity of the fire by-products, particularly the combustion gases
- how a fire spreads along a cable
- the smoke density in the event of a fire
- the corrosiveness of the combustion gases


The main fire tests are listed below.

It should also be noted that these tests are conducted under standardised conditions and do not reflect the individual fire behaviour of cables and bunched cables at the particular installation site.

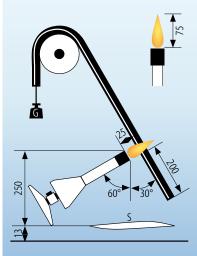
3.3.3.1. Overview of the standards for fire tests on cables

German and international fire standards		
German standard	International standard	Content
DIN EN 60332-1-1 to 3	IEC 60332-1-1 to -3	Flame propagation for single cables
(DIN VDE 0472 Part 804 C)	IEC 60332-3-##	Flame spread along bunched cables
(DIN VDE 0472 Part 813)	IEC 60754-1 and 2	Corrosiveness of gases evolving during combustion (absence of halogen)
(DIN VDE 0472 Part 816)	IEC 61034-1 and -2	Measurement of smoke density
DIN VDE 0472 Part 184	IEC 6033-11 and -25	Insulation integrity under fire conditions
DIN EN 50200	EN 50200	Insulation integrity under fire conditions
DIN 4102-12	-	Function integrity of electric cables


Flammability and fire propagation

1.1 IEC 60332-1-2 / EN 50265-2-1 / VG 95218-2 Method 1 / BS 4066 Part 1

Test set-up	The single cable under test is secured vertically and flamed with a Bunsen burner at an angle of 45° to the vertical.	
Flame temperature	Determined by the stipulated setting of the Bu	insen burner flame.
Test duration	Cable with a diameter of ≤ 25 mm: Cable with a diameter of $25 < D < 50$ mm:	60 seconds 120 seconds
Compliance criterion	The fire damage must end at least 50 mm belo The cable must be self-extinguishing.	w the upper fixing clamp.



1.2 IEC 60332-2 / EN 50265-2-2 / VG 95218-2 Method 2 / BS 4066 Part 2 The single cable under test is secured vertically and flamed Test set-up


	with a Bunsen burner at an angle of 45° to the vertical.
Flame temperature	Determined by the stipulated setting of the Bunsen burner flame.
Test duration	20 seconds
Compliance criterion	The fire damage must end at least 50 mm below the upper fixing clamp. The cable must be self-extinguishing.

1.3 MIL-W-22758 / MIL-W-8104 / VG 95218-2 Method 4

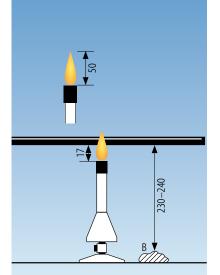
Test set-up	The single cable under test is weighted over a pulley and secured at an angle of 30° to the vertical. The Bunsen burner flame is directed at the cable from below at an angle of 60° to the vertical. Tissue paper (S) is spread out underneath the sample.
Flame temperature	At least 950 °C
Test duration	30 seconds
Compliance criterion	It is only permitted for the sample to continue burning for at most 30 seconds after the flame has been removed. Overall the fire damage to the cable must not exceed 76 mm. The tissue paper (S) spread out underneath must not be ignited by dripping material.

267

1.4 VG 95218-2 Method 3

Test set-up	The single cable under test is weighted over a pulley and secured at an angle of 30° to the vertical. The Bunsen burner flame is directed at the cable from below at an angle of 60° to the vertical. Tissue paper (S) is spread out underneath the sample.	
Flame temperature	Determined by the stipulated setting of the Bunse	en burner flame.
Test duration	Cable with a diameter of \leq 25 mm: Cable with a diameter of 25 < D < 50 mm:	60 seconds 120 seconds
Compliance criterion	It is only permitted for the sample to continue burning for at most 30 seconds after the flame has been removed. Overall the fire damage to the cable must not exceed 76 mm. The tissue paper (S) spread out	

underneath must not be ignited by dripping material.

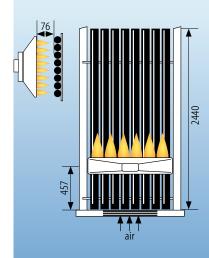

) / Section 1090 (V/W 1) 1.5

	Tes
250	Fla ten
20-75	Tes
20° 0172-0182 B	
	_

1.5 UL 1581 Sect	ion 1060 (FT1) / S	Section 1061 (Cable Flame) / Section 1080 (VW-1)
Test set-up	The cable is secured vertically and provided with a paper indica- tor flag (P, 10 x 20 mm). A Bunsen burner is used to apply the flame and it is secured at an angle of 20° to the vertical.	
Flame temperature	Determined by	the stipulated setting of the Bunsen burner flame.
Test duration	Section 1060:	5 cycles of flame application for 15 seconds with a break of 15 seconds
	Section 1061:	3 cycles of flame application for 60 seconds with a break of 30 seconds
	Section 1080:	5 cycles of flame application for 15 seconds with a break of 15 seconds and a maximum break of 60 seconds
Compliance	14 to an la manual t	

Compliance criterion

It is only permitted for the sample to continue burning for at most 60 seconds after the flame has been removed and for at most 25% of the paper indicator flag (P) to be burned. The cotton wadding (B) must not be ignited by dripping material.

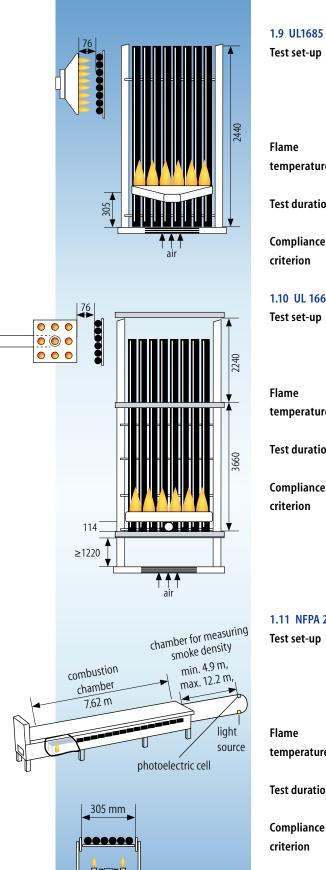

1.6 UL 1581 Section 1090 (H) / Section 1100 (FT2)

Test set-up	burner (the burne	ed horizontally and vertically and flamed with a Bunsen er is tilted at an angle of 20° for the FT2 test). Cotton aced next to the Bunsen burner.
Flame temperature	Determined by th	e stipulated setting of the Bunsen burner flame.
Test duration	30 seconds	
Compliance criterion	The cotton waddi Section 1090: Section 1100:	ng (B) must not be ignited by dripping material. The propagation speed of the flame must not exceed 25 mm/min. The length of the charred section on the sample must not exceed 100 mm.

1.7 IEC 60332-3 / EN 50266-2

3500

Test set-up	The cables are secured to a ladder, close together or spaced apart depending on the type of fire. The cables can be secured in several layers.
Flame temperature	Determined by the stipulated quantity of propane gas and air.
Test duration	IEC Part 21/EN Part 1: Category A F/R for special applications only IEC Part 22/EN Part 2: Category A (7 I flammable material/m): 40 minutes IEC Part 23/EN Part 3: Category B (3.5 I flammable material/m): 40 minutes IEC Part 24/EN Part 4: Category C (1.5 I flammable material/m): 20 minutes IEC Part 25/EN Part 5: Category D (0.5 I flammable material/m): 20 minutes
Compliance criterion	The visible area of fire damage to the cables must not exceed 2.5 m in height from the bottom edge of the burner.



↑ ↑ ↑ air

500

1.8 UL 1685 Vertical Tray

Test set-up	The cables are secured to a ladder in a single layer (quantity depends on the diameter of the cable). The length of each sample is 2.44 m.
Flame temperature	Determined by the stipulated quantity of propane gas and air. The power equals 20.5 kW (70,000 Btu/hr).
Test duration	20 minutes (2 tests to be performed)
Compliance criterion	The area of fire damage to the cables must be less than 2.44 m (measured from the bottom of the ladder).

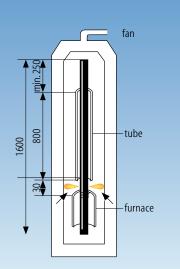
1.9 UL1685 FT4 / IEEE 1202

Test set-up	The cables are secured to a ladder in a single layer (quantity depends on the diameter of the cable). The length of each sample is 2.44 m. Cables with a diameter of <13 mm are secured to the ladder in bundles. The burner is tilted at an angle of 20°.		
Flame	Determined by the stipulated quantity of propane gas and air.		
temperature	The power equals 20.5 kW (70,000 Btu/hr).		
Test duration	20 minutes (2 tests to be performed)		
Compliance	The area of fire damage to the cables must be less than 1.5 m		
criterion	(measured from the bottom edge of the burner nozzle).		
1.10 UL 1666 Riser			
Test set-up	The cables are secured to a ladder in a single layer (quantity depends		
	on the diameter of the cable). The length of each sample is 5.33 m.		
	The flame is applied using a burner diffuser plate.		

FlameDetermined by the stipulated quantity of propane gas and air.temperatureThe power equals 154.5 kW (527,500 Btu/hr).

Test duration 30 minutes (2 tests to be performed)

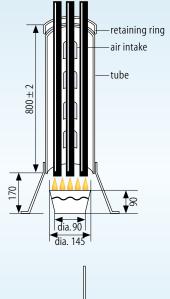
The area of fire damage to the cables must be less than 3.66 m (measured from the bottom of the ladder) and the temperature of any of the thermocouples (at a height of 3.66 m) must not exceed 454.4 °C. A third test must be carried out if the difference in propagation height for the two tests is greater than 1.52 m.


1.11 NFPA 262 / FT6 Steiner Tunnel (UL 910 withdrawn)

0.5 (light transmission of 32%).

Test set-upThe cables are secured to a horizontal ladder in a single layer (quantity
depends on the diameter of the cable). The length of each sample
is 7.32 m. A device for measuring the smoke density is placed behind
the combustion chamber.FlameDetermined by the stipulated quantity of propane gas and air.
The power equals 86 kW (294,000 Btu/hr).Test duration20 minutes (2 tests to be performed)Compliance
criterionThe area of fire damage to the cables must not exceed 1.52 m.
The mean optical density of the smoke produced must not exceed

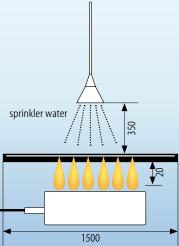
a value of 0.15. The maximum optical smoke density should not exceed


www.leoni-fiber-optics.com

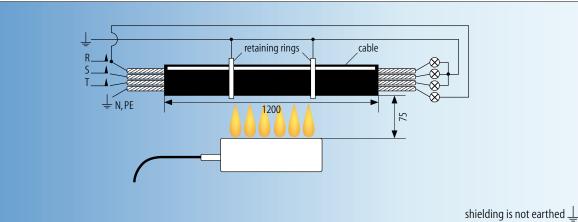
1.12 NF C32-070 Test 2 / UIC 895 VE Appendix 7

1.13 Def. St. 02-641 (formerly NES 641)

	······
Test set-up	The cable is secured vertically in a furnace with a subsequent tube (125 mm in diameter).
Flame temperature	830 °C ± 50 °C
Test duration	30 minutes
Compliance criterion	The end of the cable protruding from the top of the tube must not be damaged.



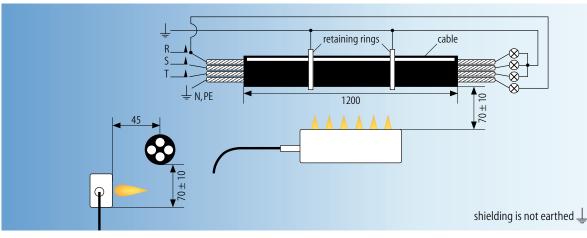
ng ring is applied by burning liquid, which is in a dish underneath the tube. ke Flame Is determined by the flammable liquid. temperature Test duration Until all the liquid has burned off.


Test set-up

Test duration	Until all the liquid has burned off.
Compliance criterion	The visible area of fire damage to the cables must not exceed 250 m down from the top edge of the cable.

Three cables are secured vertically in a tube ("Swedish chimney"). A flame

1.14 BS 6387 Category W		
Test set-up	The cable is laid horizontally. The buffered fibers and shielding must be connected to a power supply with a voltage of U_0/U . The flame is applied across a width of 1500 mm. After 15 minutes a sprinkler is turned on.	
Flame temperature	650 °C ± 40 °C	
Test duration	30 minutes (2 tests to be performed)	
Compliance criterion	When the flame is applied, it must still be possible to transmit power or signals via all conductors. There must be no short circuit between the conductors or to the shielding.	


1.15 DIN VDE 0472-814 / BS 6387 Category C

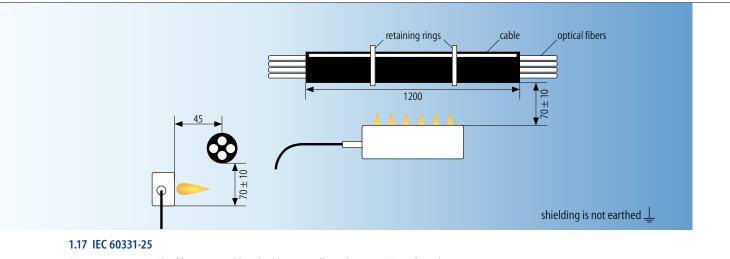
The cable is laid horizontally. The buffered fibers Test set-up and shielding must be connected to a power supply having the following voltages:

- Data cables: 110 V
- Power cables 0.6/1 kV: 230/400 V
- BS: all cables U₀/U

The flame is applied from below across a width of 1200 mm. The flame is directed at the cable.

1in. 750 ℃ S: 950 ℃ ± 40 ℃
80 minutes
When the flame is applied and during a cooling eriod of an additional 12 hours, it must still be ossible to transmit power or signals via all con- uctors. There must be no short circuit between he conductors or to the shielding and no break

1.16 IEC 60331-21/IEC 60331-23


Test set-up

The cable is laid horizontally. The buffered fibers and shielding must be connected to a power supply having the following voltages:

- Power cables 0.6/1 kV: U₀/U min. 100 V
- Data cables: 110 V

The flame is applied under the cable from a horizontally offset position across a width of 1200 mm.

Flame temperature	At least 750 °C (equipment IEC 60331-11)
Test duration	Recommended: 90 minutes
Compliance criterion	When the flame is applied and during a cooling period of an additional 15 minutes, it must still be possible to transmit power or signals via all conductors. There must be no short circuit between the conductors or to the shielding and no break in the conductors.

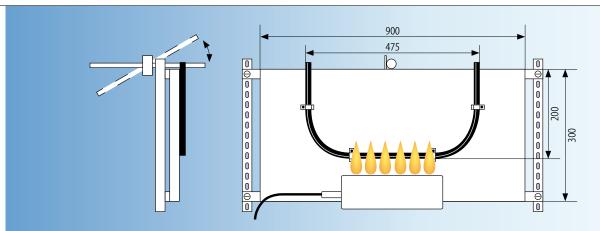
Test set-up	The fiber optic cable is laid horizontally and	Test duration	90 minutes
	the optical fibers must be connected. The flame		
	is applied under the cable from a horizontally	Compliance	When the flame is applied and during a cooling
	offset position across a width of 1200 mm.	criterion	period of an additional 15 minutes, it must still be
			possible to transmit signals via the optical fibers.

FlameAt least 750 °Ctemperature(equipment IEC 60331-11)

1.18 IEC 60331-31

Test set-up

The cable is secured onto a positioning board and a flame is applied from the front. The positioning board is subjected to shocks every 5 minutes during the combustion period.


FlameAt least 830 °Ctemperature(equipment IEC 60331-12)

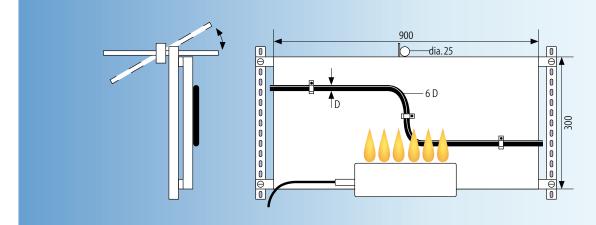
Test duration

Recommended: 120 minutes

Compliance criterion

When the flame is applied, it must still be possible to transmit power or signals via all conductors. There must be no short circuit between the conductors or to the shielding.

1.19 EN 50200


Test set-up

The cable (max. 20 mm in diameter) is secured onto a positioning board and a flame is applied from the front. The positioning board is subjected to shocks every 5 minutes during the combustion period.

Flame	842 °C
temperature	
Test duration	90 minutes

Compliance criterion

- For cables and cords with a rated voltage of up to 600/1000 V: There must be no short circuit between the conductors and no break in the conductors.
- For data and communication cables without a rated voltage: There must be no short circuit between the conductors and no break in the conductors.
- For fiber optic cables: The increase in attenuation must not exceed the values defined in the relevant design standards.

1.20 BS 6387 Category Z

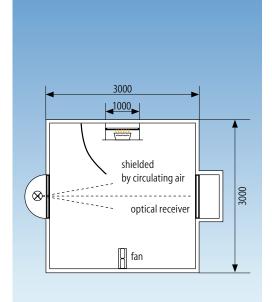
950 °C ± 40 °C

Test set-up

Flame

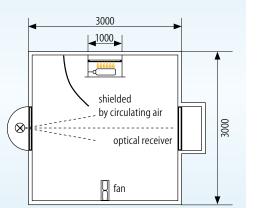
temperature

The cable is secured onto a positioning board and a flame is applied from below. The positioning board is subjected to two shocks every minute during the combustion period.


Test duration

15 minutes

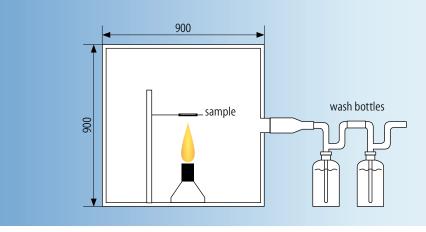
Compliance criterion


When the flame is applied, it must still be possible to transmit power or signals via all conductors. There must be no short circuit between the conductors or to the shielding.

Smoke density

2.1 IEC 61034-2/EN 50268-2

Test set-up	A cable specimen is burnt in a closed chamber using a flam- mable liquid. The light transmittance of the resulting smoke is measured optically.
Flame temperature	Determined by the quantity and composition of the fuel.
Test duration	40 minutes
Compliance criterion	At the end of the test the light transmittance of the smoke must be at least 60%, unless stated otherwise in the indi- vidual specifications.



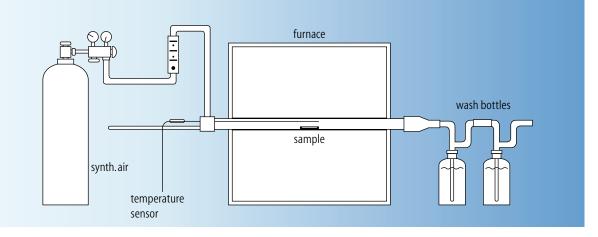
2.2 Def. St. 02-711 (formerly NES 711)

Test set-up	The devices under test are burnt in a test chamber using gas burners. The light transmittance is measured optically.
Flame temperature	Not specified (devices under test must be fully burnt).
Test duration	20 minutes
Compliance criterion	At the end of the test the light transmittance of the smoke must be at least 70%/40%/10%, depending on the product category, unless stated otherwise in the individual specifica- tions.

275

Toxicity of the combustion gases

3.1 IEC 60695-7-1

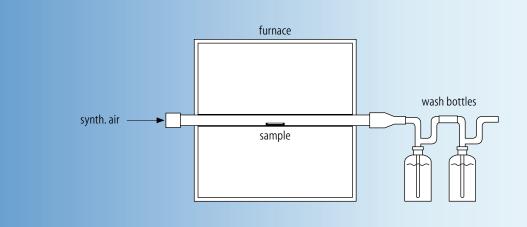

Test set-up This standard covers the general aspects of toxicity of smoke and combustion gases as well as the potential hazard (general guidelines).

3.2 Def. St. 02-713 (formerly NES 713) / VG 95218-2 Method 1

Test set-up	The individual non-metallic materials of the cables are burnt in a test chamber.	Test duration	5 minutes
	The toxicity of the combustion gas is deter- mined analytically for 14 substances.	Compliance criterion	The toxicity values for the individual non-metallic materials of the cable are added together accord-
Flame	1150 °C ± 50 °C		ing to their proportion of the total volume. The toxicity index for the overall cable must
temperature			not exceed a value of 5.

temperature

Corrosiveness of the combustion gases (absence of halogen)



4.1 IEC 60754 / EN 50267

Test set-upThis standard covers the general aspects of corrosiveness of smoke and combustion gases dissolved in water
or atmospheric moisture as well as the potential hazard (general guidelines).

4.2 IEC 60754-1 / EN 50267-2-1

Test set-up	A sample of between 0.5 g and 1.0 g is heated in a tube. The resulting gases are dissolved and tested for their halogen content.	Test duration	40 ± 5 minutes in total, with at least 20 minutes at the maximum temperature
Flame	800 °C + 10 °C	Compliance criterion	The halogen content of all non-metallic materials must not exceed 0.5 % or 5 mg/g.
temperature			

4.3 IEC 60754-2 / EN 50267-2-2

Test set-up	A sample of 1 g of all non-metallic cable com- ponents is burnt in a furnace. The pH value	Test duration	30 minutes
	and the conductivity of the combustion gases dissolved in water are measured.	Compliance criterion	The pH value of the washing water must be at least 4.3, the conductivity of the washing water must be at most 10 μ S/mm.
Flame	At least 935 °C		
temperature			

Abbreviations of standards

IEC	International Electrotechnical Commission	
EN	European Norm	
UIC	Union Internationale des Chemins de Fer	
	(International Union of Railways)	
VG	Verteidigungsgerätenorm (German Defence Equipment Standard)	
MIL	Military Standard (USA)	
BS	British Standard (UK)	
Def. St.	Defence Standard (UK)	
NES	Naval Engineering Standard (UK)	
UL	Underwriters Laboratories Inc. (USA)	
NF	Norme Française (National Standard France) (F)	
DIN VDE	Deutsche Industrienorm Verband der Elektroingenieure	
	(German Industrial Standard, Association of Electricians)	
All dimensions given in mm.		

Principles

4. Fiber bundles

In order to achieve narrower bending radii it is common to use fiber bundles consisting of fibers having small individual diameters. It is also possible to design receptacles having different cross-sectional areas or multi-branched optical waveguides. Sensor technology uses fiber bundles that radiate light via one part of the bundle and detect light via the other part.

4.1. Fill factor

Individual fibers are not able to fill the space at the ends of the receptacles completely and this results in losses in relation to the overall cross-sectional area of the receptacle because not all of the crosssectional area is optically active. The fill factor describes the ratio of the optically active cross-sectional area to the total cross-sectional area of the bundle.

$$\eta_{FF} = N \ x \ \pi \ x$$
 ($d_{core} \ / \ 2 \)^2 \ / \ \pi \ x$ ($d_{bundle} \ / \ 2 \)^2$

N is the number of individual fibers, d_{core} the diameter of one core and d_{bundle} is the total diameter of the bundle. If, for example, a bundle consists of 30 fibers each with an individual diameter of 80 µm, the optically active cross-section is calculated using the equation:

 $A = 30 \text{ x} \pi \text{ x} (80/2)^2 = 150796.45 \ \mu\text{m}^2$

Assuming that the bundle diameter is 0.5 mm, the total area is consequently equal to 196349.54 μ m². This gives a fill factor of 0.77. The geometric losses based on this fill factor are therefore around 23%.

This loss is avoided with glass and plastic fibers by hot fusing the ends of the fiber bundle. As a result, the optically active cross-sectional area of the ends of the fibers is virtually 100%.

4.2. Tapers and cones

A cone is a light-conducting rod or fiber rod having cross-sectional areas of different sizes at either end. Like a cross-section converter, this changes the aperture of a light ray. Using a cone, light from a larger optical waveguide can be launched into a smaller waveguide (e.g. an endoscope).

Fiber cones can also be used as a magnifying or demagnifying image guide.

A taper is an optical waveguide with a tapered cone.

When specifying the bending radii for cables, two limit bending radii are given: short-term and long-term. The short-term value is higher and intended for the installation of the cable. For the reasons given above it is known that the fiber can be bent further for a brief period and consequently this is specified as higher than the value given for permanent loading. In addition to the forces caused by bending during installation, it is assumed that other forces may act on the fiber as the result of torsion and tensile load and therefore considerably increase the total load.

4.3. Multi-branched fiber optic cables and splitters

Using bundle technology, a bundle of fibers can be split into two or more fiber bundles. This enables the light output to be split into partial light currents. The size of the partial currents is calculated from the number of individual fibers.

4.4. Cross-section converters

For some applications it will be necessary to convert a circular light ray into a slit light ray (spectrometry). Using bundle technology, too can be achieved elegantly by providing one end of the bundle with a circular receptacle, with the other end being stuck into a slotted receptacle.

4.5. Image guides

Provided that the fibers are held in a particular order and are assigned a specific and identical location in the cross-section at both ends of the receptacle, it is possible to transmit images by means of these fiber optic cables. The number and diameter of the individual fibers determine the resolution of the image. In practice, such image guides are produced by drawing fibers bundles simultaneously. This then fixes the geometric position of each individual fiber.

4.6. Customised fiber optic cables

The diversity of optical fibers permits optical waveguides to be tailored to the customer's particular requirements. A brief technical description or diagram is all that is required. These cables are then designed and produced in close collaboration with the customer.

4.7. Light-conducting rods and homogenisers

In principle, a light-conducting rod is a single fiber with a specific, relatively large diameter. These rods are used if the optical waveguide does not need to be flexible. One common application is for homogenising the light transmitted by the fiber bundle.

4.8. Fiber rods

Fiber rods are image guides with a larger diameter. They are used if the image guide does not need to be flexible. The individual fiber rod comprises a number of fused individual fibers.

4.9. Length of fiber bundles

The length of a bundle of optical fibers can vary greatly. Very short components include, for example, light-guide cones, which are used in endoscopy, and also homogenisers. The maximum length of a fiber optic cable is determined by the transmission losses in the core. These are dependent on the material and the wavelength. Lengths of up to 20 m are possible (see data sheets for details).

The transmission losses are accurately described by the following exponential equation (Beer's law):

$$I_{out} = I_{in} x \exp(-\alpha x I)$$

where l_{in} is the light intensity at the entry to the fiber, l_{out} is the light intensity at the exit of the optical waveguide, α is the wavelength-dependent absorption constant and l is the length of the optical waveguide.

4.10. Thermal behaviour

Generally speaking, the fibers are glued into the end receptacles. The adhesive in this case is the limiting factor for the thermal stability of the optical waveguide. Ceramic-based adhesives are already in use nowadays for high-temperature applications of up to 400 °C. Higher application temperatures are also made possible through the use of hot-fused fiber ends.

4.11. Pressure

Pressure is important with respect to liquid, vacuum and pressure cylinder applications. The receptacles and bonding processes are particularly important in this regard.

4.12. Corrosion

The standard materials used in optical waveguides are resistant to many different liquids and gases. This is particularly true of silica. On the other hand, the right material must be chosen for the receptacles and the protective tubes to ensure good resistance to corrosion.

4.13. Material

The possible materials for fiber optic cables must have certain physical properties. Flexible optical waveguides have a bundle structure that is created by drawing a rod-shaped preform. The transmission losses of the material itself must also be minimal for specific wavelengths.

4.14. Glass

Glass is commonly used as the base material for optical fibers. The term glass covers a wide range of materials (inorganic materials that are in a solid, amorphous state). For this reason, we will confine ourselves here to oxide glasses, like those used in numerous optical components, for example.

The main constituent of the glass used for conducting light is SiO₂. Additives include boric oxide and phosphorus oxide as well as a number of possible metal oxides, such as Na₂O, K₂O, CaO, Al₂O₃, PbO, La₂O₃ etc. The additives induce a change in the optical properties, e.g. the numerical aperture. Possible values in this case are 0.57 and above. The moderate melting temperatures of composite glass permit low-cost production methods to be employed. Individual fiber diameters of between 30 and 100 µm are used for flexible fiber bundles. The minimum bending radius is obtained by multiplying the individual fiber diameter by a factor of 400-600.

Standard glass optical waveguides transmit light in a wavelength range from around 400 to 1700 nm. References to this are given in the data sheets LIR 120.3, LA1, LB60 and LW2.

281

Principles

5. Planar waveguides

With an optical fiber, initially the light can be guided from point A to point B. However, more complex optical functional elements will be required if additional optical functions are to be integrated into such a transmission link. It is better to stay with wave-conducting systems and not switch to the conventional field of free-space optics. Integrated optics offer a whole range of possibilities.

5.1. Planar optical splitter components

More complex waveguide structures can be integrated into a planar substrate using a variety of methods (optical chip, similar to an electronic chip). For this LEONI uses an ion exchange process in which precise, structured variations in refractive index and hence precise waveguide structures can be created through localised substitution of sodium ions found in a special glass with silver ions. The ion exchange takes place through openings in a metal film mask having a photolithographic structure. Structural details in the submicrometre range can be achieved in this way. Currently its use is limited to singlemode waveguides for the near IR range as well as the telecommunication wavelength range.

Monolithic splitter components with up to 32 channels on the output side and 1 or 2 input channels are available.

The special properties listed below characterise the planar technique using ion exchange in glass:

- Miniature construction
- Lowest attenuation
- Wide bandwidth
- Lowest polarisation dependence
- Good structural flexibility
- Highly reliable and environmentally stable

5.2. Optical properties

The planar waveguide structures that have been optimised for use in telecommunications are suitable for transmitting over the entire standard spectral range from 1260 to 1650 nm and have very smooth spectral attenuation curves. The excess loss is less than 1 to 2 dB, depending on the splitting ratio. For specialised applications (e.g. in optical metrology) LEONI also offers customised planar waveguide components for wavelengths below the standard telecommunication range, right down to 650 nm.

The illustration below shows the sequence of processes in the manufacture of planar waveguide splitters.

Physical definitions and formulae

General

282

Velocity of light in vacuum: c = 299,792.458 km/s Velocity of light in any medium: $v = \frac{c}{n}$ Typical refractive index n \approx 1.5: Propagation velocity in an optical fiber v \approx 200,000 km/s.

 $n_1 \cdot \sin \alpha_1 = n_2 \cdot \sin \alpha_2$

 $\alpha_{\text{Critical}} = \arcsin\left(\frac{n_{\text{M}}}{n_{\text{K}}}\right) \text{ where } n_{\text{K}} > n_{\text{M}}$ $NA = \sin\theta_{\text{Critical}} = \sqrt{n_{\text{K}}^2 - n_{\text{M}}^2}$

 $\Delta = \frac{n_{\rm K}^2 - n_{\rm M}^2}{2n_{\rm M}^2} \implies {\sf NA} = n_{\rm K}\sqrt{2\Delta}$

Light propagation in a fiber

Critical angle of total internal reflection:

Numerical aperture:

Snell's refraction law:

Relative refractive index difference:

Attenuation in an optical waveguide

Drop in power along the optical fiber:

brop in porter along the optical inderi				
$P(L) = P_0 \cdot e^{-a'(L)}$	a': attenuation in neper			
$P(L) = P_0 \cdot 10^{-a(L)/10dB}$	a: attenuation in decibels			
Power in dBm:	$P/dBm = 10lg \frac{PinmW}{1mW}$			
Attenuation in the optical fiber in decibels: a/dB =				
Attenuation coefficient in dB/km: $\alpha = \frac{a}{l}$				

 $=10 \lg \frac{P_0}{P(L)} = P_0/dBm - P(L)/dBm$

T=10 (-A · L)/10

Transmission in an optical fiber

Light transmission in the fiber as a percentage of the injected power:

Coupling losses

Coupling efficiency: Ratio of the power P₂ guided in optical fiber 2 to the power P₁ provided by optical fiber 1: $\eta = \frac{P_2}{P_1}$ Attenuation at the coupling: $a/dB = 10lg \frac{P_1}{P_2} = 10lg \frac{1}{\eta} = -10lg \eta$

Intrinsic losses between multimode fibers (uniform mode distribution, step index profile or gradient index profile)

 $\eta = \left(\frac{r_{K_2}}{r_{K_1}}\right)^2 \text{ for } r_{K_1} \ge r_{K_2} \qquad \eta = 1 \text{ for } r_{K_1} \le r_{K_2}$ Mismatch of the core radii: $a = 20 \lg \frac{r_{K1}}{r_{V2}}$ in dB for $r_{K1} \ge r_{K2}$ a = 0 dB for $r_{K1} \le r_{K2}$ $\eta = \left(\frac{NA_2}{NA_1}\right)^2 \text{ for } NA_1 \ge NA_2 \qquad \eta = 1 \text{ for } NA_1 \le NA_2$ Mismatch of numerical apertures: $a = 20 \lg \frac{NA_1}{NA_2}$ in dB for NA₁ \ge NA₂ $a = 0 \operatorname{dB}$ for NA₁ \le NA₂ $\eta \!=\! \frac{g_2(g_1\!+\!2)}{g_1(g_2\!+\!2)} \text{ for } g_1 \!\geq\! g_2 \qquad \eta \!=\! 1 \text{ for } g_1 \!\leq\! g_2$ Mismatch of the refractive index profiles:

$$a = 10 \lg \frac{g_1(g_2 + 2)}{g_2(g_1 + 2)}$$
 for $g_1 \ge g_2$ $a = 0 dB$ for $g_1 \le g_2$

www.leoni-fiber-optics.com

283

Extrinsic losses between multimode fibers (uniform mode distribution, step index profile or gradient index profile)		
Radial misalignment, transverse misalignment or lateral misalignment d:	$\eta = 1 - \frac{g+2}{g+1} \cdot \frac{2d}{\pi \cdot r_{K}} \qquad a = 2.76 \cdot \frac{g+2}{g+1} \cdot \frac{d}{r_{K}} \text{ in } dB$	
Step index fiber: $g = \infty$	$\eta = 1 - \frac{2d}{\pi \cdot r_{K}}$ $a = 2.76 \cdot \frac{d}{r_{K}} \ln dB$	
Parabolic index fiber: $g = 2$	$\eta = 1 - \frac{8d}{3\pi \cdot r_{K}}$ $a = 3.68 \cdot \frac{d}{r_{K}} \text{ in dB}$	
Tilting about angle γ (in radian measure):	$\eta = 1 - \frac{g+2}{g+1} \cdot \frac{2n_0 \cdot \gamma}{\pi \cdot NA} a = 2.76 \cdot \frac{g+2}{g+1} \cdot \frac{n_0 \cdot \gamma}{NA} \text{ in dB}$	
Step index fiber: $g = \infty$	$\eta = 1 - \frac{2n_0 \cdot \gamma}{\pi \cdot NA} \qquad a = 2.76 \cdot \frac{n_0 \cdot \gamma}{NA} \text{ in dB}$	
Parabolic index fiber: $g = 2$	$\eta = 1 - \frac{8n_0 \cdot \gamma}{3\pi \cdot NA} \qquad a = 3.68 \cdot \frac{n_0 \cdot \gamma}{NA} \text{ in dB}$	
Axial misalignment or longitudinal misalignment s:	$\eta = 1 - \frac{2(1 - K)s \cdot NA}{r_{K} \cdot n_{0}} a = 8.69 \frac{(1 - K)s \cdot NA}{r_{K} \cdot n_{0}} \text{ in dB}$	
Step index fiber: $K = 1 - \frac{2}{3\pi}$	$\eta = 1 - \frac{4s \cdot NA}{3\pi \cdot r_{K} \cdot n_{0}} a = 1.84 \frac{s \cdot NA}{r_{K} \cdot n_{0}} \text{ in dB}$	
Parabolic index fiber: K = 0.75	$\eta = 1 - \frac{s \cdot NA}{2r_{K} \cdot n_{0}} \qquad a = 2.17 \frac{s \cdot NA}{r_{K} \cdot n_{0}} \text{ in dB}$	

Intrinsic losses between singlemode fibers

Mismatch of the mode-field radii: $\eta = \left(\frac{2w_1 \cdot w_2}{w_1^2 + w_2^2}\right)^2$ $a = 20 \lg \frac{w_1^2 + w_2^2}{2w_1 \cdot w_2}$ in dB $\eta=$ 1 or a = 0 dB \boldsymbol{only} if $w_{1}=w_{2},$ otherwise there are always coupling losses!

Extrinsic losses between singlemode fibers

Extrinsic losses between single-index index Radial misalignment d: $\eta = e^{-\frac{d^2}{w^2}}$ $a = 4.34 \cdot \frac{d^2}{w^2} \text{ in dB}$ Tilting about angle γ (in radian measure): $\eta = e^{-\left(\frac{\pi n_0 \cdot w\gamma}{\lambda}\right)^2}$ $a = 42.9 \left(\frac{n_0 \cdot w}{\lambda}\right)^2 \gamma^2$ in dB $\eta = \frac{1}{1 + \left(\frac{\lambda \cdot s}{2\pi \cdot n_0 \cdot w^2}\right)^2} \quad a = \left(\frac{\lambda \cdot s}{3n_0 \cdot w^2}\right)^2 \text{ in dB}$ Axial misalignment s:

Reflections

Reflection at a change in refractive index with perpendicular incidence:

Return loss:

$$R = \left(\frac{n_1 - n_0}{n_1 + n_0}\right)^2$$

RL = 10lg $\frac{P_1}{P_R} = 10lg \frac{1}{R} = -10lgR \text{ in } dB$
a = -10lg(1-R) in dB

Levels in a backscatter diagram

Level at the transition from fiber 1 (w_1 , n_1) to fiber 2 (w_2 , n_2):

Level at the transition from fiber 2 (
$$w_2$$
, n_2) to fiber 1 (w_1 , n_1):

$$a_{12} = 20 \lg \frac{w_1^2 + w_2^2}{2w_1 \cdot w_2} + 10 \lg \frac{n_2}{n_1} + 10 \lg \frac{w_2}{w_1} \text{ in dB}$$

$$a_{21} = 20 \lg \frac{w_1^2 + w_2^2}{2w_1 \cdot w_2} + 10 \lg \frac{n_1}{n_2} + 10 \lg \frac{w_1}{w_2} \text{ in dB}$$

Fibers

Number of modes that can propagate: $Z \approx \frac{V^2}{2} \cdot \frac{g}{g+2}$

V number: $V = 2\pi \cdot NA \cdot \frac{r_K}{\lambda}$

Cut-off wavelength in a singlemode fiber: $\lambda_c = \frac{2\pi \cdot r_k \cdot NA}{V_c}$; $V_c = 2.405$ if step index profile

The following applies to the mode-field radius under standard operating conditions: $w \approx r_{K} \cdot \frac{2,6}{V} \approx \frac{1,3}{\pi} \cdot \frac{\lambda}{NA}$ Coefficient of chromatic dispersion: $\frac{\lambda \cdot S_{0max}}{4} \left[1 - \left(\frac{\lambda_{0max}}{\lambda}\right)^{4} \right] \leq D_{CD}(\lambda) \leq \frac{\lambda \cdot S_{0max}}{4} \left[1 - \left(\frac{\lambda_{0min}}{\lambda}\right)^{4} \right]$

Bandwidth

Bandwidth-length product: $BLP \approx B \cdot L$. Maximum achievable bandwidth: $B \approx \frac{0.335}{T}$ (T: pulse width)

Chromatic dispersion

Coefficient of chromatic dispersion: $D_{CD} (\lambda) = D_{MAT} (\lambda) + D_{WAV} (\lambda) = \frac{d\pi(\lambda)}{d\lambda}$ in ps/(nm·km) Chromatic dispersion: $D(\lambda) = D_{CD} (\lambda) \cdot L$ in ps/nm Zero-crossing point of chromatic dispersion: $D_{CD} (\lambda_0) = 0$ Increase in the coefficient of chromatic dispersion: $S(\lambda) = \frac{dD_{CD}(\lambda)}{d\lambda} = \frac{d^2\tau(\lambda)}{d\lambda^2}$ in ps/(nm²·km) Increase in the coefficient of chromatic dispersion at the zero-dispersion wavelength $\lambda_0 : S_0 = S(\lambda_0)$ in ps/(nm²·km) Pulse spreading due to chromatic dispersion: $\Delta \tau_{CD} = HWB \cdot L \cdot D_{CD}$ Dispersion-limited length for externally modulated lasers and with conventional modulation methods (Marcuse): $L \approx \frac{100,000((Gbit/s)^2ps/nm)}{R^2 \cdot D_{CD}}$

Dispersion tolerance: $DT = L \cdot D_{CD}$

 $PMD_1 = \frac{\langle \Delta \tau \rangle}{I}$ in ps/km

 $PMD_1 = \frac{\langle \Delta \tau \rangle}{\sqrt{l}}$ in ps/ \sqrt{km}

Physical definitions and formulae

Principles

Polarisation mode dispersion

First-order PMD coefficient with weak mode coupling:

First-order PMD coefficient with strong mode coupling:

Dispersion-limited length with strong mode coupling and conventional NRZ modulation:

Series connection of numerous sections of sufficient length with strong mode coupling:

PMD delay: $\langle \Delta \tau \rangle_{\text{Length}} = \sqrt{\sum_{i} \langle \Delta \tau_i \rangle^2}$ PMD coefficient: $\text{PMD}_{1\text{Length}} = \frac{\sqrt{\sum_{i} \left[L_i \cdot \left(\text{PMD}_1^i\right)^2\right]}}{\sqrt{L}}$ where $\sum_{i} L_i = L$

Coupler

Excess loss:	$EL = 10 lg \frac{P_1}{P_3 + P_4} \text{in } dB$
Insertion loss:	$IL = 10Ig \frac{P_1}{P_3}$ or $IL = 10Ig \frac{P_1}{P_4}$ in dB
Coupling ratio:	$CR = \frac{P_4}{P_3 + P_4} \times 100$ in %
Return loss:	$RL = 10lg \frac{P_1}{P_{1r}}$ in dB
Cross-talk attenuation:	$D = 10 \lg \frac{P_1}{P_2}$ in dB
Uniformity:	$U/dB = IL_{max}/dB - IL_{min}/dB$
Isolation:	$I{=}10lg\frac{P_{_{3}\lambda_{1}}}{P_{_{3}\lambda_{2}}} or I{=}10lg\frac{P_{_{4}\lambda_{2}}}{P_{_{4}\lambda_{1}}} in \ dB$

Dense wavelength division multiplexing

Connection between light frequency and wavelength in vacuum: $f(\lambda) = \frac{c}{\lambda}$ Spacing between adjacent light frequencies Δf and adjacent wavelengths $\Delta \lambda$: $|\Delta f| = \frac{c \cdot |\Delta \lambda|}{\lambda^2} \Rightarrow \Delta f = 100 \text{ GHz}$ corresponds to $\Delta \lambda \approx 0.8 \text{ nm}$ in the third optical window. Standardised wavelength grid for a channel spacing of 100 GHz: $f_n = 193.1 \text{ THz} + n \times 0.1 \text{ THz}$, where n is a positive or negative integer (including zero).

Symbols and units of measure

Symbols/units of measure	Definition	
a	attenuation in decibels	
a'	attenuation in neper	
a ₁₂ / a ₂₁	levels in a backscatter diagram in decibels	
В	bandwidth in GHz	
BLP	bandwidth-length product in MHz km	
CR	coupling ratio	
d	radial misalignment in µm	
D	directivity: cross-talk attenuation in decibels	
D	chromatic dispersion in ps/nm	
D _{cD}	coefficient of chromatic dispersion in ps/(nm·km)	
D _{MAT}	coefficient of material dispersion in ps/(nm·km)	
D _{WAV}	coefficient of wavelength dispersion in ps/(nm·km)	
dB	decibel	
dBm	unit of logarithmic power based on a milliwatt	
dB/km	unit of attenuation coefficient	
51	1	
EL	excess loss in decibels	
f	frequency in hertz	
g	profile exponent	
Gbit	gigabit	
GHz	gigahertz	
HWB	full width at half maximum	
Hz	hertz	
112	here	
1	isolation in decibels	
IL .	insertion loss in decibels	
km	kilometre	
L	length in kilometres	
m	metre	
mW	milliwatt	
n	refractive index	
n _o	refractive index of the medium between the end faces	
n _K	core refractive index	
n _M	cladding refractive index	
NA	numerical aperture	
nm	nanometre	
	lanometre	

-	
Р	power in mW
PO	injected power
PMD ₁	first-order PMD coefficient
ps	picoseconds
r _K	core radius in µm
R	bit rate in Gbit/s
R	reflection
RL	return loss:
	reflection attenuation in decibels
	avial micelian ment in um
S	axial misalignment in µm
S	increase in the coefficient of chromatic dispersion in ps/nm ² .km)
So	increase in the coefficient of chromatic dispersion
	at the zero-dispersion wavelength
S _{0max}	maximum increase in the coefficient of chromatic
	dispersion at the zero-dispersion wavelength
Т	pulse width
T	transmission
U	uniformity in decibels
v	propagation velocity in km/s
٧	V number
Vc	normalised critical frequency
W	mode-field radius
Z	
	number of modes that can be propagated
α	
	attenuation coefficient in dB/km
α	attenuation coefficient in dB/km angle between incident ray and perpendicular
$lpha$ $lpha_{critical}$	attenuation coefficient in dB/km angle between incident ray and perpendicular critical angle of total internal reflection
α $\alpha_{critical}$ γ	attenuation coefficient in dB/km angle between incident ray and perpendicular critical angle of total internal reflection tilt angle
$lpha$ $lpha_{critical}$	attenuation coefficient in dB/km angle between incident ray and perpendicular critical angle of total internal reflection tilt angle coupling efficiency
α $ αcritical $ $ γ $ $ η $ $ λ$	attenuation coefficient in dB/km angle between incident ray and perpendicular critical angle of total internal reflection tilt angle coupling efficiency wavelength in nm
$ α $ $ α_{critical} $ $ γ $ $ η $ $ λ $ $ λ_0 $	attenuation coefficient in dB/km angle between incident ray and perpendicular critical angle of total internal reflection tilt angle coupling efficiency wavelength in nm zero-dispersion wavelength in nm
α α _{critical} γ η λ λ ₀ λ _{0max}	attenuation coefficient in dB/km angle between incident ray and perpendicular critical angle of total internal reflection tilt angle coupling efficiency wavelength in nm zero-dispersion wavelength in nm maximum zero-dispersion wavelength
α α _{critical} γ η λ λ ₀ λ _{0max} λ _{0min}	attenuation coefficient in dB/km angle between incident ray and perpendicular critical angle of total internal reflection tilt angle coupling efficiency wavelength in nm zero-dispersion wavelength in nm maximum zero-dispersion wavelength minimum zero-dispersion wavelength
α α _{critical} γ η λ λο λ _{omax} λ _{omin} λ _c	attenuation coefficient in dB/km angle between incident ray and perpendicular critical angle of total internal reflection tilt angle coupling efficiency wavelength in nm zero-dispersion wavelength in nm maximum zero-dispersion wavelength minimum zero-dispersion wavelength cut-off wavelength in nm
α α _{critical} γ η λ λο λomax λc Δλ	attenuation coefficient in dB/km angle between incident ray and perpendicular critical angle of total internal reflection tilt angle coupling efficiency wavelength in nm zero-dispersion wavelength in nm maximum zero-dispersion wavelength minimum zero-dispersion wavelength cut-off wavelength in nm spacing between adjacent wavelengths
α α _{critical} γ η λ λο λomin λc Δλ μm	attenuation coefficient in dB/km angle between incident ray and perpendicular critical angle of total internal reflection tilt angle coupling efficiency wavelength in nm zero-dispersion wavelength in nm maximum zero-dispersion wavelength minimum zero-dispersion wavelength cut-off wavelength in nm spacing between adjacent wavelengths micrometre
$\begin{array}{c} \alpha \\ \alpha_{critical} \\ \gamma \\ \eta \\ \lambda \\ \lambda_0 \\ \lambda_0 \\ \lambda_{0max} \\ \lambda_{0min} \\ \lambda_c \\ \Delta \lambda \\ \mu m \\ \theta_{critical} \end{array}$	attenuation coefficient in dB/km angle between incident ray and perpendicular critical angle of total internal reflection tilt angle coupling efficiency wavelength in nm zero-dispersion wavelength in nm minimum zero-dispersion wavelength minimum zero-dispersion wavelength cut-off wavelength in nm spacing between adjacent wavelengths micrometre maximum allowable angle of inclination to the optical axis
α α _{critical} γ η λ λο λomin λc Δλ μm	attenuation coefficient in dB/km angle between incident ray and perpendicular critical angle of total internal reflection tilt angle coupling efficiency wavelength in nm zero-dispersion wavelength in nm maximum zero-dispersion wavelength minimum zero-dispersion wavelength cut-off wavelength in nm spacing between adjacent wavelengths micrometre

Definition of terms

Term	Definition
Absorption	Loss of light radiation when passing through matter as the result of conversion into other forms of energy, e.g. heat energy. With photodiodes, the absorption is the process that destroys a photon as it arrives and through its energy elevates an electron from the valence band to the conduction band.
Acceptance angle	The largest possible angle within which light in the area of the fiber core can impinge on the end face, thus enabling it to be guided along the fiber core.
Add-Drop-Multiplexer	Functional module that makes it possible to add and drop partial signals to/from a multiplex signal.
Amplified spontaneous emission	Amplification of spontaneous events in an optical amplifier when the input signal is missing. Causes the characteristic noise of the fiber amplifier.
Analyser	Component for checking the state of polarisation of the light. Differs from a polariser only with regard to its function in the selected optical design. The ana- lyser is located on the observer side.
APC connector	\rightarrow HRL connector
Arrayed waveguide grating	Integrated, optical component that functions as a mul- tiplexer/demultiplexer. Different input wavelengths cause differences in phase, permitting a channel separation similar to the classic diffraction grating.
Attenuation	Reduction in the optical signal power in a fiber due to scattering, absorption, mode conversion or at a cou- pling point (connector, splice). Attenuation is a dimen- sionless variable and is usually given in decibels.
Attenuation coefficient	Is the attenuation based on the length of the fiber. The attenuation coefficient is expressed in dB/km and is an important parameter for characterising a fiber.
Attenuation dead zone	Minimum spacing from a reflecting event in order to be able to measure the attenuation of a following event (OTDR measurement).
Attenuation-limited operation	Limitation of the achievable transmission link due to the effects of attenuation.
Avalanche photodiode	Receiver component that is based on the avalanche effect: the photoelectric current is amplified through carrier multiplication.
Backscatter attenuation	Ratio of incident optical power to the optical power scattered in the fiber, this optical power being capable of propagating in the reverse direction. Usually ex- pressed in decibels (positive values).
Band gap	Energy gap between the valence band and the conduc- tion band of a semiconductor. The band gap defines the operating wavelength of a semiconductor laser.
Bandwidth of the optical amplifier	Spectral range that is optically amplified (usually based on a 3-dB drop).
Bandwidth-length product	The bandwidth of an optical fiber is approximately inversely proportional to its length with negligible mode mixing and changing processes. The bandwidth multiplied by the length is therefore almost constant. The BLP is an important parameter for characteris- ing the transmission properties of multimode fibers. With increasing length, the bandwidth decreases to a lesser extent. Consequently, a modified relation- ship applies to the BLP, in which a gamma factor is introduced.

Bend loss	Additional loss caused by micro- or macro-bending. An increased bend loss may be caused by the manu-		
	facture of the cable or by poor cable routing.		
Bending radius	Two different definitions:		
	1. Minimum radius of curvature by which a fiber		
	can be bent without breaking. 2. Minimum radius of curvature by which a fiber can be bent without		
	exceeding a certain predetermined attenuation value.		
Bidirectional	Propagation of optical signals in opposing directions along one optical waveguide.		
Birefringence	Property by which the effective propagation velocity		
	of the light wave in a medium depends on the orienta-		
	tion of the light's electrical field (state of polarisation).		
Bit	Basic unit of information in digital transmission		
	systems. The bit is equivalent to the decision between		
	two states, 1 and 0. Bits are represented as pulses.		
	A group of eight bits is equal to one byte.		
Bit error rate	The ratio of the number of bit errors occurring on aver-		
	age in digital signal transmission over a relatively long period of time to the number of bits transmitted		
	during this period. The bit error rate is a system-		
	specific index of error probability. The standard		
	requirement is a BER < 10–9. In modern SDH systems,		
	a BER $<$ 10–12 is required. The bit error rate can be		
	reduced using forward error correction (FEC).		
Bit rate	Transmission rate of a binary signal, also called the bit repetition rate.		
CCDR	Cladding-to-core diameter ratio		
Channel gain	The amplification of a signal with a specific		
	wavelength in a DWDM system. It differs in general		
	for different wavelengths.		
Channel spacing	Frequency spacing or wavelength spacing between		
	adjacent channels in a wavelength division multiplex		
	system.		
Chirp	Change in frequency (change in wavelength)		
	of the laser diode as the result of modulation across the laser current.		
Chirpod fiber Programstin			
Chirped fiber Bragg grating	Fiber Bragg grating with different distances between the reflecting sections. Is suitable for compensating		
	dispersion.		
Chromatic dispersion	Pulse spreading in the optical waveguide arising		
	from differences in the propagation velocity of light		
	at different wavelengths. Is the dominant type of dis-		
	persion in singlemode fibers and consists of material		
<i>c</i> : 1.	and waveguide dispersion.		
Circulator	→ Optical circulator		
Cladding	The entire, optically transparent material of a fiber, except the core.		
Coarse wavelength division multiplex	Wavelength division multiplexing method with chan- nel spacings of 20 nm.		
Coherence	Property of light of having fixed phase and amplitude		
	relationships at a different time and space. A distinc-		
	tion is made between spatial and temporal coherence		
Coherent light source	Light source which emits coherent waves		
Core	The central area of an optical fiber which serves		
	as a waveguide.		

Term	Definition
Core-to-cladding eccentricity	Parameter for fibers which states how far the centre of the fiber core is from the centre of the overall fiber.
Coupler	Passive, optical component having multiple input and output ports for combining or dividing optical power or wavelengths.
Coupling efficiency	The ratio of optical power downstream of a coupling point to the power upstream from this coupling point.
Coupling length	Length of a fiber that is required to achieve an equi- librium mode distribution. It may be a few hundreds to a few thousands of metres.
Coupling loss	Loss that occurs when two fibers are joined. There is a distinction between fiber-related (intrinsic) coupling losses, which occur owing to various fiber parameters, and mechanically related (extrinsic) losses, which stem from the joining technique.
Coupling ratio	The percentage of power emerging from a certain output with respect to the total amount of emerging power in a coupler.
Critical angle	The angle of incidence of a light ray when passing from one substance with a higher refractive index into another substance with a lower refractive index, the angle of refraction being 90°. The critical angle separates the area of totally reflected rays from the area of refracted rays, i.e. the portion of rays guided along the fiber from those rays that are not guided.
Critical wavelength	→ Cut-off wavelength
Cross-talk attenuation Directivity	Ratio of the injected power to the power emerging from the dark input on the same side of a coupler.
Crosstalk	Undesirable signals in a communication channel caused by the overcoupling of other channels.
Cut-back technique	Method for measuring attenuation in which the fiber to be measured is cut back.
Cut-off wavelength	Shortest wavelength at which the fundamental mode of a fiber is the only mode capable of being propagated. To ensure singlemode operation, the cut- off wavelength must be smaller than the wavelength of the light to be transmitted.
Decibel	Logarithmic power ratio of two signals
Demultiplexer	→ Multiplexer
Dense wavelength division multiplex	Wavelength division multiplexing method with a very small channel spacing (typically: 0.8 nm).
DFB laser Distributed feedback laser	Laser diode with a spectral full width at half maximum of <<1 nm, by which very specific light wavelengths can be reflected by means of a series of undulating bumps on the semiconductor surface but with just one single resonance wavelength being amplified.
Dielectric thin-film filter	Optical filter which only allows a small wavelength range to pass through and all other wavelengths are reflected.
Differential mode delay	Difference in delay between the mode groups in a multimode fiber
Dispersion	Scattering of the group delay in a fiber. As a result of the dispersion, the light pulses spread out over time and thereby restrict the bit rate and/or the length of cable.

Dispersion compensation	The reversal of effects causing pulse spreading, e.g. chromatic dispersion or polarisation-mode dispersion.	
Dispersion tolerance	Measure of the spectral properties of a transmitter. Permits the dispersion-limited length to be deter- mined, provided the coefficient of chromatic disper- sion of the fiber is known.	
Dispersion-compensating fiber	Special fiber that can compensate for any dispersion that occurs, e.g. with a large negative coefficient of chromatic dispersion.	
Dispersion-limited operation	Limitation of the achievable transmission link due to the effects of dispersion.	
Dispersion-shifted fiber	Singlemode fiber with a shifted zero-crossing point of the coefficient of chromatic dispersion (as per ITU-T G.653). This fiber has minimum chro- matic dispersion as well as minimum attenuation at 1550 nm.	
Dopant	Material with which the refractive index can be changed.	
Doping	Intentionally adding small quantities of a different substance to a pure substance in order to alter its properties. For example, the increased refractive index of a fiber core is achieved by doping the basic substance (silicon dioxide) with germanium dioxide.	
Double heterostructure	Sequence of layers in an optoelectronic semiconductor component, in which the active semiconductor coating is sandwiched by two jacket layers with a larger band gap. With laser diodes, the double heterostructure confines the charge carriers and creates a fiber in the active zone.	
Increase in dispersion coefficient Zero-dispersion slope	Increase in the coefficient of chromatic dispersion at a particular wavelength, e.g. at the dispersion zero-crossing point.	
Insertion loss	Loss of power that results from inserting a component into the previously continuous path.	
Insertion loss technique	Method for measuring attenuation in which the meas- urement object is inserted into a reference section.	
Electroabsorption modulator	Component which blocks an optical signal or allows it to pass, depending on whether or not a voltage is applied. Used for the amplitude modulation of an optical signal.	
Electromagnetic wave	Periodic change of state of an electromagnetic field. In the range of optical frequencies these are called light waves.	
Emitter	Semiconductor component in which an applied elec- tric current generates an emission in the visible or near infrared range of light. A distinction is made between an edge emitter and a surface emitter.	
Equilibrium mode distribution	Energy distribution in a multimode fiber which stops changing after passing along a sufficient length (cou- pling length) and is independent of the original mode distribution at the coupling point. Higher-order modes have a comparatively lower power than lower-order modes. Reproducible attenuation measurements are only possible if equilibrium mode distribution prevails in a multimode fiber.	
Equipment dead zone	Distance from the base to the end of the falling edge at the start of the section to be measured (OTDR measurement).	

Definition of terms

Principles

Term	Definition	
Er⁺ fibers	Fibers with an erbium-doped core for use in optical amplifiers	
Event dead zone	Minimum spacing between two reflecting events in order to be able to measure the location of the second event (OTDR measurement).	
Excess loss	Sum of the optical power leaking out of all ports of a coupler in relation to the input power in dB.	
External modulation	Modulation of a light carrier outside the actual light source (e.g. laser) using a special modulator (e.g. a Mach-Zehnder modulator). Thus, the light source itself remains unaffected by the signal and can be constant in terms of its frequency and power or regulated independently of the modulated signal.	
Fabry-Perot laser	Simple type of semiconductor laser that makes use of the Fabry-Perot resonator effect. Has a relatively large spectral full width at half maximum (a few nm).	
Fabry-Perot resonator	Space defined on two sides by flat, parallel mirrors. A flat wave injected perpendicularly to the mirror faces travels back and forth multiple times between the mirrors. A standing wave of high intensity forms in the resonator (resonance) if twice the distance between the mirrors is equal to a multiple of the light's wavelength.	
Faraday effect	The plane of oscillation of linearly polarised light is twisted if a magnetic field is applied in the direc- tion of the light. The proportionality constant between the magnetic field and the angle of rotation per light path travelled in the field is the Verdet constant. The Faraday effect is used in the design of a Faraday rotator.	
Fiber	Term for a round optical waveguide.	
Fiber amplifier	Uses a laser-like amplification effect in a fiber, whose core is highly doped with erbium, for example, and is stimulated with an optical pump power of a specific wavelength.	
Fiber bandwidth	The frequency at which the value of the transfer function (based on the optical power) of a fiber decreases to half its value.	
Fiber Bragg grating	A spectral filter that is based on the change in refrac- tive index in the fiber core. A key element of compo- nents such as optical multiplexers/demultiplexers, dispersion compensators or EDFAs with a flattened amplifier curve.	
Fiber buffer	Consists of one or more materials that are used for pro- tecting the individual fibers from damage and provide mechanical isolation and/or mechanical protection.	
Fiber curl	Inherent curvature of a fiber	
Ferrule	Guide pin for fiber connectors in which the fiber is secured.	
Field diameter	→ Mode field diameter	
Four-wave mixing	Formation of combination frequencies (totals, dif- ferences) of optical signals through nonlinear optical effects. Occurs as interference in a fiber (consequence: nonlinear crosstalk in DWDM systems) and is used for shifting the frequency of optical signals.	

Fresnel loss	Attenuation as the result of Fresnel reflection	
Fresnel reflection	Reflection as the result of a change in the refractive index	
Full width at half maximum	Width of a distribution curve (time, wavelength) at which the power drops to half its maximum value.	
Fundamental mode	Lowest order mode in a fiber with an approximately Gaussian field distribution. Identified by LP01 or HE11.	
Fused fiber splice	Is the connection of two fibers by melting the ends.	
Fused silica glass	A synthetically produced glass with a silicon dioxide content >99 %, base material for glass fibers.	
Gain	Ratio between the mean output power and input power, omitting the contributions made by amplified spontaneous emission.	
Gamma factor	Describes the relationship between the bandwidth and distance that can be spanned.	
Germanium dioxide GeO_2	A chemical compound that is the most common substance used in the manufacture of optical fiber for doping the fiber core.	
Ghosts	Interference in the backscatter diagram as the result of multiple reflections on the fiber link	
Gradient index profile	Refractive index profile of a fiber that continually decreases across the cross-sectional area of the fiber core from the inside outwards.	
Gradient index fiber	Fiber with a gradient index profile	
GRIN lens	Glass rod a few millimetres in diameter which has a refractive index curve like that of a parabolic index fiber (profile exponent \approx 2). The light propagates in an approximately sinusoidal shape. In fiber optic technology, GRIN lenses are used imaging elements or in beam splitters.	
Group index	Quotient from velocity of light in vacuum and propagation velocity of a wave group (group velocity), of a light pulse in a medium.	
Group velocity	Propagation velocity of a wave group, e.g. of a light pulse, which is composed of waves having different wavelengths.	
HCS, HPCS, PCF, PCS	Fibers with a silica/silica or plastic core and hard or normal polymer cladding, which is tightly bonded to the core.	
Hertz	Unit of measure for frequency or bandwidth; corresponds to one oscillation per second.	
High-power connector	Special connector design which permits the transmission of very high power densities, which can occur particularly in DWDM systems.	
HRL connector	Connector with very high reflection attenuation, which is ensured through physical contact in combination with angled polishing.	
Immersion	Medium with a fluid adapted approximately to the refractive index of the fiber core. The immersion is suitable for reducing reflections.	
Infrared radiation	Range of the spectrum of electromagnetic waves from 0.75 μ m to 1000 μ m (near infrared: 0.75 μ m to 3 μ m, medium infrared: 3 μ m to 30 μ m, far infrared: 30 μ m to 1000 μ m). Infrared radiation is invisible to the human eye. The wavelengths for optical com- munications are in the near infrared range (0.85 μ m, 1.3 μ m, 1.55 μ m).	

Term

Intensity	Power density (power per unit area) on the radiating area of a light source or on the cross-sectional area of a fiber (unit of measure: $mW/\mu m^2$).
Interference	Overlapping of waves: addition (constructive interference) or cancellation (destructive interference)
Isolation	Ability to suppress undesirable optical energy that occurs in a signal path.
Isolator	→ Optical isolator
Kerr effect	Non-linear effect when subject to high intensities: the refractive index changes as a function of the power.
Laser	Acronym for Light Amplification by Stimulated Emission of Radiation. A light source that generates coherent light through stimulated emission.
Laser chirp	Displacement of the central wavelength of a laser during one single pulse.
Laser diode	Transmitter diode based on semiconductor materials which emits a threshold current of coherent light (stimulated emission).
Launch angle	Angle between the propagation direction of incident light and the optical axis of the fiber. For the light to be guided in the fiber core, the launch angle must not exceed the acceptance angle.
Launch conditions	Conditions under which light is injected into an optical waveguide. They are important for the further dispersion of the optical power in the optical waveguide.
Launch efficiency	Indicates how efficiently an optical transmitter can be coupled onto an optical waveguide. The launch efficiency is the ratio between the optical power conducted by the fiber and the optical power output by the transmitter.
Launching fiber	Fiber connected upstream of the fiber to be measured.
Lead-out fiber	Fiber connected downstream of the fiber to be measured.
Leaky mode	Type of wave that is attenuated through radiation along the fiber and is in the marginal area between guided modes of a fiber and the non-propagatable light waves.
Light-emitting diode	A semiconductor component that emits incoherent light by means of spontaneous emission.
Light injection and detection	System for adjusting fibers in splicers using bending couplers.
Limited phase space method	Method to reduce the phase space volume in a multi- mode fiber with the aim of achieving an approximate equilibrium mode distribution.
Low-water-peak fiber	Singlemode fiber with a low attenuation coefficient in the wavelength range between the 2nd and 3rd optical window by reducing the OH peak at the wavelength of 1383 nm.
Mach-Zehnder interferometer	A device that splits the optical signal into two optical paths of different, generally variable path lengths

and joins them together again. The two rays are then able to interfere. The Mach-Zehnder interferometer is often used as an external intensity modulator.

Definition

Macrobending	Macroscopic axial deviations in a fiber from a straight line (e.g. on a delivery spool). Can lead to local attenu- ation, particularly in singlemode fibers if certain radii of curvature are exceeded.	
Material dispersion	Pulse spreading due to the dependence of the wavelength on the refractive index. The light from the transmitter, which is injected into the fiber, always has an infinite spectral width. Each portion of wavelength corresponds to a different refractive index of the glass and thus also to a different propaga- tion velocity. Material dispersion is usually negligible in a multimode fiber.	
Microbending	Microscopic bends or unevenness in the fiber which give rise to losses by injecting light that is guided in the core into the cladding.	
Microelectromechanical system	Component that contains moving mechanical parts to guide light. Two-dimensional and three-dimensional configurations are possible.	
Modal dispersion	The dispersion in a fiber caused by the superimposi- tion of modes having different delay times at the same wavelength. Dominant type of dispersion in a multi- mode fiber.	
Mode field diameter	Measure of the width of the approximate Gaussian light distribution in a singlemode fiber. It is the distance between the points at which the field distribution drops to the value $1/e \approx 37$ %. Since the eye records the intensity of the light, the mode field diameter corresponds to a drop in intensity, with respect to the maximum value, to $1/e2 \approx 13.5$ %.	
Mode filter	Component for implementing an approximate equilibrium mode distribution. It causes radiation of higher-order modes.	
Mode mixing	Gradual energy exchange between the various modes during the propagation along the multimode fiber.	
Mode scrambler	Component for implementing an equilibrium mode distribution in a multimode fiber.	
Modes	Solutions to Maxwell's equations, taking into account the constraints of the waveguide. They correspond to the possible propagation paths in the fiber.	
Modulation	A selective change in a parameter (amplitude, phase or frequency) of a harmonic or discontinuous carrier in order to transmit a message by this carrier.	
Mono-mode fiber	→ Singlemode fiber	
Multimode fiber	Fiber whose core diameter is large compared with the wavelength of the light. Numerous modes can be propagated in it.	
Multipath interference	Interference as a result of multiple reflections on one optical path. These reflections are phase-shifted with- in the detected signal, which results in pulse spreading and a deterioration of the system properties.	
Multiplexer	Functional unit that receives a series of transmission channels and bundles the signals for transmit- ting in a common channel. At the end of a section, a demultiplexer separates them back into the original signals. A distinction is made between various multiplexing methods, e.g. time-division multiplexing or wavelength-division multiplexing.	

Definition of terms

Principles

Term	Definition	Optical isolator	Non-reciprocal, passive optical component with low
Noise due to multiple reflection	Noise of the optical receiver caused by interference of delayed signals through multiple reflections at points along the length of the fiber.		insertion loss in the forward direction and high inser- tion loss in the reverse direction. The optical isolator is capable of greatly suppressing power return loss. The main part of an optical isolator is the Faraday rota
Noise figure	Ratio of the signal-to-noise ratio at the input to the signal-to-noise ratio at the output of the optical		tor, which makes use of the magneto-optic effect.
	amplifier. As each amplifier always adds its own noise, the noise figure is always >1. It is a power ratio and is given in decibels. At best, the noise figure is equal to 3 dB.	Optical return loss Optical time domain reflectometer	→ Return loss A measuring instrument which measures light scattered and reflected in the fiber and consequently provides information about the properties of the sec-
Nonlinear optical effect	The dielectric material properties change with a high energy density in the fiber core (generally speaking, in a strong electromagnetic field). The effects, which are weak per se, increase as a result of the generally long sections that the optical signals travel in fiber.		tion installed. The optical time domain reflectometer permits the measurement of attenuation, attenuation coefficients, defects (connectors, splices, interrup- tions), their attenuation and return loss as well as thei locations in the fiber. Dielectric waveguide whose core is made of optically
Nonlinearities	Collective term for nonlinear optical effects: FWM, SBS, SPM, SRS and XPM.	Collective term for nonlinear optical effects: fiber. fibre	
Non-return to zero	Method for modulating amplitudes in which the on and off levels are maintained for an entire bit interval.		cladding is made of optically transparent material witl a lower refractive index than that of the core. It is usec for transmitting signals by means of electromagnetic waves in the range of the optical frequencies.
Non-uniformity of amplification	Change in the amplification as a function of the wavelength. The slope of the amplification profile is expressed in dB/nm.	Optoelectronic circuit	Functional module that technically combines electronic, optical and optoelectronic components on a shared substrate (GaAs, InP).
Non-zero dispersion shifted fiber	Fiber with a small, non-zero coefficient of chromatic dispersion in the wavelength range of the 3rd optical window. This fiber is used in multichannel (DWDM) systems and is suitable for reducing the effect of four- wave mixing.	Optoelectronic regenerator	Intermediate amplifier in fiber sections which ampli- fiers the signal using optoelectronic conversion, reger erates it in terms of time, pulse shape and amplitude and converts it back to an optical signal (3R regenera- tor: retiming, reshaping, reamplification). 2R function
Numerical aperture	The sine of the acceptance angle of a fiber. The nu- merical aperture is dependent on the refractive		at low bit rates (no retiming). 1R function: signal amplification only.
	index of the core and of the cladding. An important parameter for characterising a fiber.	Outer modulation	→ External modulation
Optical add-drop	Component which drops one of the signals	Parabolic index fiber	Fiber with a parabolic refractive index profile across the cross-section of the core
multiplexer	from a signal burst (consisting of multiple wavelengths), which is travelling along a fiber,	PC connector	Connector with physical contact at the connector end face
Optical amplifier	and injects a new signal of the same wavelength. Component which permits direct amplification	Phase refractive index	Quotient from velocity of light in vacuum and phase velocity
	of numerous wavelengths at the same time. Is particularly important in DWDM systems.	Phase velocity	Propagation velocity of a flat (monochromatic) wave
Optical attenuator	Component that attenuates the intensity of the light	Photodiode	Component that absorbs light energy and produces a photoelectric current
0.11.1	passing through the component.	Photon	Quantum of an electromagnetic field, 'light particle'
Optical axis Optical channel	Axis of symmetry of an optical system Optical wavelength band for optical wavelength- division multiplex transmission.	Photonic crystal fibers	Special two-dimensional shape of a photonic crystal. Fiber with a plurality of microscopic holes parallel to the optical axis of the fiber. The mode guidance
Optical circulator	Non-reciprocal, passive optical component which guides an optical signal from port 1 to port 2, another signal from port 2 to port 3 and successively to all other ports. The circulator operates like an isolator but in the opposite direction.	Photonic crystals	is achieved by deliberately installing 'defects'. Periodic structures with dimensions in the order of magnitude of the wavelength of light or below. Area of research of (nano-)optics, where considerable impetus is expected for the development of future,
Optical communications	Method of transmitting messages using light.		signal-processing functional elements.
Optical cross-connect	Optical switch with N inputs and N outputs. It can guide an optical signal, which enters at any input port, to any output port.	Pigtail	Short section of a fiber optic cable having a connector for coupling optical components to the transmission link.
Optical glass	Composite glass with a silicon dioxide content of approx. 70% and additional components, such as boric oxide, lead oxide, calcium oxide, etc.	Plastic optical fiber	Optical fiber consisting of a plastic core and cladding with a comparatively large core diameter and a large numerical aperture. Inexpensive alternative to a glass fiber for applications with low requirements with re-

Term	Definition
PIN photodiode	Receiver diode with predominant absorption in a space-charge region (i-zone) within its pn junc- tion. Such a diode has a high defective quantum ef- ficiency, but unlike avalanche photodiodes no internal current amplification.
Planar waveguide	Waveguide structure that is created on or at the surface of substrates.
Polarisation	Property of a transversal wave of retaining certain oscillating states. Polarisation is proof of the transversal nature of an electromagnetic wave.
Polarisation-dependent attenuation	The difference (in dB) between maximum and mini- mum attenuation values as the result of a change in the state of polarisation of the light propagating through the component.
Polarisation mode dispersion	Dispersion arising from delay differences between the two modes which are oscillating orthogonally to each other. Polarisation mode dispersion only occurs in sin- glemode fibers. It only has any significance at high bit rates and with a drastic reduction in the chromatic dispersion.
Polariser	Component for producing linearly polarised light (polarising filter, polarising prism). Differs from an ana- lyser only with regard to its function in the selected optical design. The polariser is located on the side of the light source.
Power-law index profile	Refractive index profile whose radial characteristic is described as a power of the radius.
Polymer optical fiber	→ Plastic optical fiber
Preamplifier	Optical amplifier that is used directly upstream of the receiver.
Preform	Glass rod comprising core glass and cladding glass which can be drawn to form a fiber.
Primary coating	Is the coating applied directly to the cladding surface when manufacturing the optical fiber. It may comprise a number of layers. This preserves the integrity of the surface.
Principal states of polarisation	The two most orthogonal polarisation states of a mono-chromatic light ray, which are injected into a fiber (input PSP) and propagate along the fiber without any pulse spreading or distortion.
Profile aligning system	System for aligning fibers in splicers with the aid of an image of the fiber structure on a CCD line.
Profile dispersion	Dispersion arising from an unsatisfactory adaptation of the profile exponent of a parabolic index fiber to the spectral properties of the optical transmitter.
Profile exponent	Parameter with which the shape of the profile is defined for power-law index profiles. Particularly important profile exponents in practice are $g \approx 2$ (parabolic index fiber) and $g \rightarrow \infty$ (step index fiber).
Quantum efficiency	In a transmitter diode, the ratio of the number of emitted photons to the number of charge carriers transported across the pn junction. In a receiver diode, the ratio of the number of electron-hole pairs produced to the number of incident photons.

Raman amplifier, amplification	Makes use of an amplification effect that is produced in a long optical fiber when a relatively high pump optical power (a few 100 mW) is injected. The differ- ence between the frequency of the pumping wave and the frequency of the amplified signal wave is called the Stokes frequency. Unlike optical fiber amplifiers and semiconductor amplifiers, Raman amplification is not tied to a specific optical frequency range.
Rayleigh scattering	Scattering caused by fluctuations in density (inhomogeneities) in a fiber which are smaller than the wavelength of the light. Rayleigh scattering is largely responsible for the attenuation in a fiber and it decreases with the fourth power of the wavelength.
Receiver	A component (part of a terminal device) in optical communications for converting optical signals into electrical signals. It comprises a receiver diode (PIN photodiode or avalanche photodiode) that can be coupled to an optical fiber, a low-noise amplifier and electronic circuits for processing the signal.
Receiver sensitivity	The minimum optical power required by the receiver for low-noise signal transmission. With digital signal transmission, the mean optical power in mW or dBm is specified, with which a particular bit error rate, e.g. 10–9, is achieved.
Receptacle	Connecting element of the active optical component and the fiber connector. The component is accommo- dated in a rotationally symmetrical guide. The optical path can be guided by an optical system. The ferrule in the connector is centred by a sleeve which is aligned with the optically active surface area of the compo- nent. The housing is formed by the connector's locking mechanism.
Reflectance	Reciprocal value of return loss. Expressed as a negative value in decibels.
Reflection	Return of rays (waves) at a boundary between two media having different refractive indices, the angle of incidence being equal to the angle of reflection.
Reflection loss	Ratio of incident optical power to reflected optical power; usually given in decibels (positive values).
Reflectometer method	Method for the space-resolved measurement of power return loss (\rightarrow Optical time domain reflectometer).
Refraction	The change in direction experienced by a ray (wave) when it passes between different materials having different refractive indices.
Refractive index	Ratio of the velocity of light in a vacuum to the propagation velocity in the respective medium. The refractive index is a function of the material and the wavelength.
Refractive index difference	Difference between the maximum refractive index occurring in the core of a fiber and the refractive index in the cladding. The refractive index difference defines the size of the numerical aperture of the optical fiber.
Refractive index profile	Characteristic of the refractive index over the cross- sectional area of the fiber core.
Relaunch efficiency	Proportion of the light in relation to the total scattered light that is in the reverse direction within the accept- ance range and is guided in the fiber.

Definition of terms

Principles

Term	Definition	Snell's law	Describes the relationshi
Resolution	Spacing between two events at which the optical time domain reflectometer is still able to recognise the sec-		which light enters and er refraction.
Resolution bandwidth	ond event precisely and measure its attenuation. The ability of an OSA to plot two closely adjacent wavelengths separately. The resolution bandwidth is usually determined by the spectral properties of the optical filter in the OSA.	Soliton	State of oscillation of one medium, which remains despite the dispersive pr Pulse power, pulse shape ties of the transmission n
Return loss	Ratio of the incident optical power to the returned optical power (reflected and scattered light), which is caused by a specific length of a fiber section (usually expressed in decibels: positive values). Sometimes the returned optical power means just the reflected light.	Spectral efficiency, bandwidth efficiency, spectral density Spectral width	proportions. Ratio of transmitted bit r the DWDM system to the singlemode fiber within range. Measure of the range of the
Return to zero	Method for modulating amplitudes in which	Splice	Adhesive joint between t
	the on and off levels are not maintained for an en-	Splicing	Bonding or splicing of tw
Ribbon cable design	tire bit interval. Design in which the optical fibers are arranged in the form of ribbons. The fibers in a ribbon cable can all be spliced together at the same time.	Spontaneous emission	Emitted radiation if the in mechanical system rever state to a lower state, wit being present. Examples radiation from a laser dic
Ribbon fiber	Interconnection of several fibers with a primary coat- ing which are held together by means of an additional	State of polarisation	or some of the emission Orientation of the electri
Safety margin	shared jacket (similar to a flat cable). Attenuation or attenuation coefficient which is taken into account when planning fiber optic systems. The safety margin is necessary because of a potential	·	optical wave. Generally, 1 of an ellipse. Special cases: linearly po polarised light.
Scattering	increase in the attenuation in a transmission link dur- ing operating due to component ageing or repairs. Main reason for losses in a fiber. It is caused by micro-	Step index profile	Refractive index of a fibe by a constant refractive i and by a stepped drop at
	scopic fluctuations in density in the glass, which there- by change the direction of some of the guided light so that it is no longer in the fiber's acceptance range in the forward direction and consequently the signal is lost. The main component of scattering is Rayleigh scattering.	Stimulated emission	It occurs when photons i available excess charge o nation, in other words to light is identical, in terms to the incident light; it is
Self-phase modulation	Effect that occurs in the core due to the nonlinear optical effect in a fiber with a high energy density in the core. As a result, a light pulse with a frequency	Substitution method	Method for measuring at ence fiber is substituted in a measurement sectio
	(wavelength) that was originally constant undergoes a phase modulation proportional to its instantaneous intensity.	Surface-emitting laser	A laser that emits light polar layer structure of the sen a circular ray of low diver
Side-mode suppression	Ratio of the power of the dominant mode to the power of the maximum side mode in decibels.		spectral full width at half important for the transm
Signal-to-noise ratio	Ratio of useful signal to interference signal within the frequency band that is used for the transmission.	Switch	multimode fibers at 850 Component which transport
Silica/silica fiber	Optical waveguide comprising a core material (synthetic silica) having a higher refractive index and a cladding material having a lower refractive	System bandwidth	Bandwidth of a section of the transmitter to the red
	index. The refractive indices are modified by doping the material (fluorine, germanium).	Taper	Optical adapter that crea from one optical wavegu
Single-longitudinal mode laser	Laser diode which has one dominant longitudinal mode. The side-mode suppression is at least 25 dB.	Threshold current	The minimum current at of the light wave in a lase
Singlemode fiber	Waveguide in which just one single mode, the fun- damental mode, is capable of being propagated at the operating wavelength.		tical losses, with the resu starts. The threshold cur on the temperature.
Small-signal gain	Gain with small input signals (preamplifier), if the amplifier is not yet operating in saturation.	Time division multiplex	Multiplex system in whic sion channel is assigned in succession.

Snell's law	Describes the relationship between the angle at which light enters and emerges when it undergoes refraction.
Soliton	State of oscillation of one solitary wave in a nonlinear medium, which remains unchanged as it propagates despite the dispersive properties of the medium. Pulse power, pulse shape and dispersion proper- ties of the transmission medium must be in specific proportions.
Spectral efficiency, bandwidth efficiency, spectral density	Ratio of transmitted bit rates of all channels in the DWDM system to the bandwidth capacity of a singlemode fiber within the respective wavelength range.
Spectral width	Measure of the range of wavelengths in the spectrum
Splice	Adhesive joint between fibers
Splicing	Bonding or splicing of two fiber ends
Spontaneous emission	Emitted radiation if the internal energy of a quantum- mechanical system reverts back from a stimulated state to a lower state, without stimulated emission being present. Examples: Emission from an LED, radiation from a laser diode below the lasing threshold or some of the emission of an optical amplifier.
State of polarisation	Orientation of the electric field vector of a propagating optical wave. Generally, this vector takes the path of an ellipse. Special cases: linearly polarised light, circularly polarised light.
Step index profile	Refractive index of a fiber that is characterised by a constant refractive index within the core and by a stepped drop at the core-cladding boundary.
Stimulated emission	It occurs when photons in a semiconductor stimulate available excess charge carriers into radiant recombi- nation, in other words to emit photons. The emitted light is identical, in terms of wavelength and phase, to the incident light; it is coherent.
Substitution method	Method for measuring attenuation in which a refer- ence fiber is substituted by the measurement object in a measurement section.
Surface-emitting laser	A laser that emits light perpendicular to the layer structure of the semiconductor material. Emits a circular ray of low divergence, has a relatively low spectral full width at half maximum and is particularly important for the transmission of high bit rates over multimode fibers at 850 nm.
Switch	Component which transmits light from one or more input ports to one or more output ports.
System bandwidth	Bandwidth of a section of fiber, measured from the transmitter to the receiver.
Taper	Optical adapter that creates a gradual transition from one optical waveguide to another.
Threshold current	The minimum current at which the amplification of the light wave in a laser diode is greater than the op- tical losses, with the result that stimulated emission starts. The threshold current is greatly dependent on the temperature.
Time division multiplex	Multiplex system in which the time on one transmis- sion channel is assigned to different sub-channels in succession.

Term	Definition
Total internal reflection	Reflection at the boundary between a more optically dense medium and a less optically dense medium, the light propagating in the more optically dense medium. The angle of incidence at the boundary must be greater than the critical angle of total internal reflection.
Transceiver	Compact component having one electrical and two optical interfaces (transmitter and receiver). Contains an optical transmitter (e.g. laser diode) with an exciter for operating the light source and an optical receiver (e.g. PIN diode) with a receiver circuit for operating the diode.
Transmission	Light transmission in the fiber as a percentage based on the injected power.
Transmitter	A component in optical communications for convert- ing electrical signals into optical signals. The trans- mitter comprises a transmitter diode (laser diode or LED), an amplifier as well as other electronic circuits. For laser diodes in particular, a monitor photodiode with an automatic gain control amplifier is required to monitor and stabilise the radiated power. A thermis- tor and Peltier cooling are often used to help stabilise the operating temperature.
Transponder	Wavelength converter (O/E/O converter). Implements the wavelength conversion and 2R or 3R regeneration.
Tunable Laser	Laser that is able to change its peak intensity wavelength to optimise it for any given application.
Unidirectional	Propagation of optical signals in the same direction along one fiber.
Uniform mode distribution	Mode distribution in which the power is distributed uniformly across all modes.
Uniformity	Difference in insertion losses from the best and worst ports (in decibels) with multi-port couplers
V number	Dimensionless parameter that is depend- ent on the core radius, the numerical aperture and the wavelength of the light. The number of guided modes is determined by the V number.
Water peak	Increase in attenuation of the fiber in the region of the wavelength of 1383 nm caused by hydroxyl ion impurities in the glass.
Waveguide	A dielectric or conductive medium in which electromagnetic waves can propagate.
Waveguide dispersion	Typical type of dispersion in a singlemode fiber. Is caused by the wavelength dependence of the light distribution of the fundamental mode on the core and cladding glass.
Wavelength	Spatial period of a flat wave, i.e. the length of one com plete oscillation. In optical communications, the wave- lengths used are in the range from 650 nm to 1625 nm Velocity of light (in the particular medium) divided by the frequency.
Wavelength division multiplex	Method for increasing the transmission capacity of a fiber by simultaneously transmitting different light wavelengths.
Zero-dispersion wavelength	Wavelength at which the chromatic dispersion of the fiber is zero.

Abbreviations

Abbreviations

Abbreviation	Explanation	EIC	expanded wavelength independent coupler
3R	3R regeneration: reamplification, reshaping, retiming	EMB	effective modal bandwidth, laser bandwidth
A/D	analogue/digital	EMD	equilibrium mode distribution
A-DCM	adaptive dispersion-compensating module	EML	externally modulated laser
ADM	add-drop multiplexer	EN	European Norm
AEL	accessible emission limit	ESLK	earth wire overhead cable [Erdseil-Luftkabel]
ATM	asynchronous transfer mode	ETDM	electrical time division multiplex
AON	all optical network or agile optical network	FA	fixed analyser
	or active optical network	FBG	fiber Bragg grating
APC	angled physical contact	FBT	fused biconic taper
APD	avalanche photodiode	FC	fiber connector
ASE	amplified spontaneous emission	FDDI	fiber distributed data interface
ASON	automatically switched optical network	FDM	frequency division multiplex
ASTN	automatically switched transport network: see ASON	FEC	forward error correction
AWG	arrayed waveguide grating	FIC	full range wavelength independent coupler
BER	bit error rate	FM	frequency modulation
BOTDR	Brillouin OTDR	FOC	fiber optic cable, fiber
C&C	crimp & cleave		
CATV	cable television	FP ES AN	Fabry-Perot
C-band		FSAN	full service access network
C-Dallu	conventional band (1530 nm to 1565 nm)	FTTC	fiber to the curb
CCDR	cladding-to-core diameter ratio	FTTD	fiber to the desk
CDR	chromatic dispersion	FTTH	fiber to the home
	code division multiplex	FTTM	fiber to the mast
CDM		FTU	fiber termination unit
CECC	CENELEC Electronic Components Committee	FWHM	full width at half maximum
COST COTDR	European co-operation in the field of scientific and technical	FWM	four wave mixing
	research	Ge	germanium
CPR	coupled power ratio	GeO ₂	germanium oxide
CSO	composite second-order beat noise	GFF	gain guided laser
CVD	chemical vapour deposition	GINTY	general interferometric analysis
CW	continuous wave	GRIN	graded refractive index
CWDM	coarse wavelength division multiplex	GZS	accessible emission limit
D2B	domestic digital bus	HCS fiber	hard-clad silica fiber
DA	dispersion accommodation	HRL	high return loss
DBFA	double band fiber amplifier: fiber amplifier	IEC	International Electrotechnical Commission
	for the C- and L-band	IGL	index guided laser
DBR laser	distributed Bragg reflector laser	IM	intensity modulation
DCD	dispersion compensation device	InGaAs	indium gallium arsenide
DCF	dispersion compensating fiber	InGaAsP	indium gallium arsenide phosphide
DCM	dispersion compensation module	IOC	integrated optoelectronic circuit
DFB laser	distributed feedback laser	IP	internet protocol
DFF	dispersion flattened fiber	IPA	isopropyl alcohol
DGD	differential group delay (caused by PMD)	IR	infrared
DIN	Deutsches Institut für Normung [German standards institute]	ISDN	integrated service digital network
DMD	differential mode delay	ISO	International Organization for Standardization
DML	directly modulated laser	ITU	International Telecommunication Union
DMS	dispersion managed soliton		
DMUX	demultiplexer	ITU-T	ITU Telecommunication Sector
DOP	degree of polarisation	IVD	inside vapour deposition
DSF	dispersion shifted fiber	JME	Jones matrix eigenanalysis
DST	dispersion supported transmission	LAN	local area network
DTF	dielectric thin film filter	L-band	long band extended transmission band
			(1565 nm to 1625 nm)
DUT	device under test	LD	laser diode
DWDM	dense wavelength division multiplex	LEAF	large effective area fiber
E/O	electrical to optical conversion	LED	light emitting diode
EA	electroabsorption	LID	light injection and detection
EBFA	extended band fiber amplifier: fiber amplifier for the L-band	LP	linearly polarised
EDFA	erbium doped fiber amplifier	LSA	least-squares averaging, least-squares approximation
EDWA	erbium doped waveguide amplifier	LWP	low water peak

MAN			
	metropolitan area network	РСН	prechirp
Mbits/s	unit of measure for the bit rate	PCM	pulse code modulation
MCVD	modified chemical vapour deposition	PCS fiber	polymer cladded silica fiber
MEMS	micro-electro-mechanical system	PCVD	plasma activated chemical vapour deposition
MFD	mode field diameter	PD	photodiode
MM	multimode	PDC	passive dispersion compensator
MMF	multimode fiber	PDF	probability density function
MPE	maximum permissible exposure	PDFA	praseodymium doped fiber amplifier
MPI	multipath interference	PDG	polarisation-dependent gain
MPI	main point of interest	PDH	plesiochronous digital hierarchy
MUX	multiplexer	PDL	polarisation-dependent loss
MZ	Mach-Zehnder	PIN diode	positive-intrinsic-negative diode
MZB	see MPE	PLC	planar lightwave circuit
NA	not applicable	PM	polarisation maintaining
NF	near field	PMD	polarisation mode dispersion
NGN	next generation network	РММА	polymethyl methacrylate
NIR	near infrared	PMSMF	polarisation-maintaining single mode fiber
NRZ	non-return to zero	POF	plastic optical fiber/polymer optical fiber
NZDSF	non-zero dispersion shifted fiber	PON	passive optical network
OADM	optical add-drop multiplexer	POTDR	polarisation optical time-domain reflectometer
OB	optical booster	PSA	Poincaré sphere analysis
0C	optical carrier or optical channel	PSP	principal state of polarisation
OCDM	optical code division multiplex	P-t-MP	point-to-multi-point
OCWR	optical continuous wave reflectometer	P-t-P	point-to-point
OD	optical demultiplexer	QDST	quaternary dispersion supported transmission
ODFM	optical frequency division multiplex	QoS	quality of service
ODF	optical distribution frame	RBW	resolution bandwidth
0/E	optical to electrical conversion	RC	reduced cladding
OEIC	opto-electronic integrated circuit	RDS	relative dispersion slope
0/E/0	optical to electrical to optical conversion	RFA	Raman fiber amplifier
OFA	optical fiber amplifier	RIN	relative intensity noise
OFL	overfilled launch	RML	restricted mode launch
OLCR	optical low coherence reflectometry	RMS	root mean square
ОН	hydroxide ion, negatively charged ion in water	RNF	refracted nearfield method
OLT	optical line terminal	ROADM	reconfigurable optical add/drop-multiplexer
OM	optical multiplexer	RX	receiver
ONU	optical network unit	RZ	return to zero
OP	optical preamplifier	SAN	storage area network
OPAL	optical connection line	S-band	short band transmission band for small wavelengths
OPGW	optical ground wire	S-ballu	(1460 nm to 1530 nm)
ORD	optical reflection discrimination	SBS	stimulated Brillouin scattering
ORL	optical return loss	SDH	synchronous digital hierarchy
ORR	optical rejection ratio	SDM	space division multiplex
OSA	optical spectrum analyser	SERCOS	serial real-time communication system
OSC	optical spectrum undysch	SFF	small-form-factor
OSNR	optical signal-to-noise ratio	Si	silicone
OTDM	optical time division multiplex	SI	step index
OTDM	optical time domain reflectometry	SiO2	silicon oxide
OTDN	optical transport network	SLA	semiconductor laser amplifier
OVD	outside vapour deposition	SLED	super LED
OWG	optical waveguide	SLED SLM	
OXC			single-longitudinal mode laser
P	optical cross connect	SM	singlemode
	failure probability	SMF	singlemode fiber
PAS	profile aligning system	SMSR	side mode suppression ratio
PBG	photonic bandgap	SNR	signal-to-noise ratio
PC	physical contact	SOA	semiconductor optical amplifier
PCF	polymer cladded fiber	SONET	synchronous optical network

Fiber**Connect**[®] Fiber**Tech**[®]

Abbreviations

Principles

Abbreviation	Explanation
SOP	state of polarisation
SPE	Stokes parameter evaluation
SPM	self-phase modulation
SRS	stimulated Raman scattering
SSC	standard singlemode coupler
SSMF	standard singlemode fiber
STM	synchronous transport module
STS	synchronous transport signal
TDFA	thulium-doped fiber amplifier
TDM	time division multiplex
TINTY	traditional interferometry analysis
TODC	tunable optical dispersion compensator
TX	transmitter
U	ultra long-haul
UDWDM	ultra-dense wavelength division multiplex
UMD	uniform mode distribution
UV	ultraviolet
V	very long-haul
VAD	vapour phase axial deposition
VCSEL	vertical cavity surface emitting laser
VCSOA	vertical cavity semiconductor optical amplifier
VOA	variable optical attenuator
VSR	very short reach
WAN	wide area network
WDM	wavelength division multiplex
WFC	wavelength flattened coupler
WG	waveguide
WIC	wavelength independent coupler
WWDM	wideband wavelength division multiplex
XPM	cross-phase modulation
ZWP	zero water peak

Reference literature

Dr. Dieter Eberlein

DWDM – Dichtes Wellenlängenmultiplex

Dr. M. Siebert GmbH Berlin 2003 1st edition 231 pages b/w 21.5 cm × 15.2 cm Hardcover ISBN-13: 978-3-00-010819-8 Price: €45 Purchase through Dr. M. Siebert GmbH Köpenicker Straße 325/Haus 211, 12555 Berlin Tel.: +49 (0)30-654740-36

Dr. Dieter Eberlein and four other authors

Lichtwellenleiter-Technik

expert verlag GmbH Renningen 2007 7th edition 346 pages b/w ISBN-13: 978-3-8169-2696-2 Price: €54 Purchase through expert verlag GmbH Postfach 2020, 71268 Renningen Tel.: +49 (0)7159-9265-0

Description

Following an introduction to the problems of dense wavelength-division multiplexing, the book discusses important components that are required for wavelength-division multiplexing. This is followed by an explanation of the dispersion effects and measures to control them. Measurements performed on DWDM systems are described in another chapter. Finally, the book concludes with a look ahead to future developments.

Topics covered

- From conventional to dense wavelength-division multiplexing
- Components in DSDM systems (laser diodes, optical waveguides, optical amplifiers, nonreciprocal components, multiplexers/demultiplexers, etc.)
- Dispersion in singlemode fibers (chromatic dispersion, polarisation-mode dispersion)
- Measuring techniques (spectral measurement, measurement of polarisation-mode dispersion, measurement of chromatic dispersion, measurement of bit error rates, Q-factor measurement)
- 40-Gbit/s technology
- Trends (CWDM, Solitons, components, design of modern networks, planning and installation)
- Standardisation
- Appendix (abbreviations, symbols, units of measure, glossary)

Description

The book offers an introduction to fiber optics. The discussion of the subject matter is based on sound theory, which is then expanded into concrete practical examples and applications. This enables readers to apply the topics directly to their own situations.

The 7th edition additionally explores a range of new aspects, such as current standards, new fibers types, the reliability of fiber optic cables, particular requirements for transmitting Gigabit Ethernet or 10-gigabit Ethernet over multimode fibers and so forth.

Topics covered

- Principles of fiber optics
- Temporary joining techniques
- Permanent joining techniques
- Fiber optic measuring techniques, focusing particularly on backscattering measurements
- Optical transmission systems
- Development trends

Books

Andreas Weinert

Plastic Optical Fibers

Description

In recent years there has been a meteoric rise in the use of plastic fiber optic cables, e.g. for data transmission on short to mediumlength transmission paths. The reason for this is that plastic fiber optic cables can be connected to the relevant transmission components at low cost and using simple tools.

This book offers an introduction to the physical principles of the new technology and describes the materials and manufacturing process of plastic fibers as well as the construction of plastic fiber optic cables. It describes various types of cable, as well as transmitting and receiving components in the transmission path and it provides useful tips on the processing and installation of plastic fiber optic cable. Reference is also made to important national and international standards.

This book is intended for anyone involved in the development, planning or installation of plastic fiber optic cable systems. The fundamental structure of the book also makes it suitable for university lecturers and students.

Olaf Ziemann, Werner Daum, Jürgen Krauser, Peter E. Zamzow

POF Handbuch

	Olaf Ziemann - Jürgen Krauser Peter E. Zamzow - Werner Daum POF-Handbuch	
	Optische Kurzstrecken- Übertragungssysteme 2., bestentete ont erginnte Auflige	
1		
	Springer	

Springer-Verlag Berlin Heidelberg 2nd edited and supplemented edition 2007 884 pages Hardcover ISBN: 978-3-540-49093-7

Description

POF (polymer optical fibers) are still in their infancy but are gaining popularity in communication technology.

The advantages are considerable, but how are they used? Different systems of innovative and important technologies are described. The reader is given an introduction and a general overview. The book covers point-to-point systems, in other words the transmission of one channel from the transmitter to the receiver, and wavelength division-multiplexing systems, i.e. the transmission of multiple channels over one fiber having different light wavelengths. The excellent descriptions of the subject-matter in the book are complemented with a highquality, full-colour presentation.

Dr. Dieter Eberlein

Leitfaden Fiber Optic

	Algorithm
	and the second sec
Dr. Dieter Eberlein	Name -
	Interime
Leitfaden	Salesona -
Fiber Optic	-
	and the second s
	10-00
	Indian
	Recorded
	Name of Street
	autoter.
	Renamenter
	and in
	Derivates
1	

Dr. M. Siebert GmbH Berlin 2005 1st edition 186 pages two-colour 21.5 cm \times 15.2 cm Hardcover ISBN-13:978-3-00-015038-8 Price: \in 19.95 Purchase through Dr. M. Siebert GmbH Köpenicker Straße 325/Haus 211, 12555 Berlin Tel.: +49 (0)30-654740-36

Description

The guidebook provides an outline of key topics of fiber optics in the form of short descriptions, explanatory illustrations, summarising tables and references to current standards. It enables engineers, technicians and students alike to learn quickly about a topic, without having to explore the subject area in depth. This makes the guidebook an important tool for any specialist working in the field of fiber optics.

Topics covered

- General information
- Principles of fiber optics
- Coupling of optical components
- Optical fiber connectors
- Splicing techniques
- Optical fibers
- Fiber optic cables
- Dispersion
- Transmitters for optical communications
- Receivers for optical communications
- Fiber optic measuring techniques
- Couplers
- Optical amplifiers
- Optical components
- Wavelength division multiplexing
- Optical transmission systems

Dr. Dieter Eberlein

Messtechnik Fiber Optic

Dr. M. Siebert GmbH Berlin 2006 1st edition 170 pages four-colour 21.5 cm \times 15.2 cm Hardcover ISBN-13: 978-3-00-018278-5 Price: \in 30 Purchase through Dr. M. Siebert GmbH Köpenicker Straße 325/Haus 211, 12555 Berlin Tel.: +49 (0)30-654740-36

Description

This book explains basic methods of fiber optic measuring techniques. It focuses specifically on characterising installed fibers. In addition to conventional methods, such as attenuation and backscattering measurements, it also examines measurements that are required for modern fiber sections (spectral measurements, CD and PMD measurements). Lesser known, but equally useful measuring techniques, such as the space-resolved measurement of fiber expansion or temperature, are also discussed.

Topics covered

- Power measurements
- Attenuation measurements
- Backscattering measurements
- Reflection measurements
- Measurement of chromatic dispersion (CD)
- Measurement of polarisation-mode dispersion (PMD)
- Spectral measurements
- Bandwidth measurements
- Bit error rate measurements
- Q-factor measurements

Books

Dr. Dieter Eberlein and four other authors

Messtechnik Fiber Optic Part 1 Rückstreumessung

Dr. M. Siebert GmbH Berlin 2007 1st edition 96 pages four-colour 21.5 cm x 15.2 cm Booklet, adhesive binding ISBN-13:978-3-00-022129-3 Price: €13.50 Purchase through Dr. M. Siebert GmbH Köpenicker Straße 325/Haus 211, 12555 Berlin Tel.: +49 (0)30-654740-36

Description

This booklet is the first in a series of four on fiber optic measuring techniques. The first booklet concentrates on the theoretical and practical aspects of backscattering measurements. Current developments and standards are also described and new products are presented.

Topics covered

- General information
- Backscattering measurements theoretical principles
- Linear measurements and attenuation measurements
- Parameters of the optical time domain reflectometer
- Bidirectional measurements
- Specific events on the backscatter curve
- Particular measurement requirements
- Evaluation and documentation of the measurement results
- Passive and active monitoring of fiber sections
- Practical aspects
- Quality specifications
- Abbreviations, symbols, units of measure

Dr. Dieter Eberlein

Messtechnik Fiber Optic Part 2 Elementare Messverfahren

Messtechnik Fiber Optic Teil 2: Elementare Messverfahren	Suddhami Jiriganian Bilgarig B
	Annual and Annual Annua
	period and

Dr. M. Siebert GmbH Berlin 2008 1st edition 96 pages four-colour 21.5 cm x 15.2 cm Booklet, adhesive binding ISBN-13:978-3-00-024216-8 Price:€13.50 Purchase through Dr. M. Siebert GmbH Köpenicker Straße 325/Haus 211, 12555 Berlin Tel.:+49 (0)30-654740-36

Description

This booklet is the second in a series of four on fiber optic measuring techniques. It describes elementary measurement techniques for characterising fiber sections. It covers power measurements and attenuation measurements as well as special measuring techniques for passive, optical networks.

Topics covered

- Measuring aids
- Power measurements
- Attenuation measurements
- Reflection measurements
- ORL measurements
- Measurements on passive, optical networks

Find out more at WWW.**LWLtechnik**.de

Service & Index

Man S

We provide our customers with extensive system expertise and exceptional service, from the initial consultation by experienced engineering teams, to problem analyses, project planning, technical documentation, individual and integration tests right through to complete fiber optic systems. In dialog with our customers we develop application optimized systems for a variety of industrial sectors, meeting the respective requirements in every way.

We are constantly striving to provide quality and service at a competitive price. To increase efficiency, we make good use of our various production sites throughout Germany.

Quality management

A consistently high standard of quality is essential for our products.

Our leading market position is consolidated not only through continuous improvements to our product quality and manufacturing standards but also through flexibility in responding quickly to customer and market demands.

Our ISO 9001- and ISO 13485-certified quality management systems enable us to communicate our product and competence portfolios in a clear and transparent manner and to adjust our manufacturing procedures to our customers' expectations. Our quality management system is certified to ISO 9001 and this governs the entire production process from planning to completion.

Environmental management

Service & Index

We do not regard financial success and environmental responsibility as a contradiction in terms. We acknowledge our special co-responsibility as a global industrial company in protecting the world's natural resources. We are endeavouring to strike a balance between environmental issues and the interests of our company. Protecting the environment is therefore an intrinsic element of our corporate activities.

We encourage our partners to operate by the same environmental guidelines as we do and advise our customers on how to use and dispose of our products in an environmentally responsible manner. Our cable production has successfully implemented an environmental management system in line with ISO 14001.

304

Quality assurance

We have the human resources to meet the demands of our quality management system in all divisions:

Cables

Every cable that leaves our factory is subjected to a full inspection to ensure it satisfies its attenuation values. We are one of a few manufacturers in the world to use a method that enables attenuation measurements to be carried out on POF over a factory length of 500 m, for example. This not only reduces measuring errors, it also permits longer factory lengths.

Furthermore, the combination of production order number and drum number printed onto the cable provides complete traceability throughout the entire manufacturing process, from the receiving inspection of the fibers to the delivery of the cable. Years later we can still ascertain the measured parameters of a particular cable, for example.

CE 0197

Fibers

During the manufacture of our fibers, we constantly monitor online the complete spectrum of requirements for fiber and coating geometry for the entire drawing process. This is also true when it comes to extruding fibers using a wide variety of materials. To verify that our fibers satisfy the stipulated strength requirements, every length of fiber produced in its entirety undergoes a screen test.

Measured values for the transmission and numerical aperture are available for every fiber batch. All the requirements stipulated for the various fibers are monitored 100% for the entire manufacturing process. No single metre of fiber leaves the factory without being tested first.

Medical products

Our top priority when manufacturing our medical products is to ensure compliance with the fundamental requirements of RL 93/42/EEC and thus the safety of patients, users, third parties and the environment. This is documented by the CE marking on our medical products. CE mark approval is verified every year by our notified body.

To this end, we have implemented a comprehensive QA system in line with the requirements of EN ISO 13585. This standard contains the same basic requirements as EN ISO 9001, but also goes a lot further. The objective of this standard is to verify that the efficiency of the quality management system is being maintained rather than just being continuously improved. Service & Index

305

Packaging units

Drums

Fiber optic cables with larger cross-sections are usually delivered on wooden drums made by KTG Kabeltrommel GmbH & Co. KG, in Cologne.These are supplied on loan under the conditions of this company, which we can send you on request.

All cables with POF, PCF and special fibers are supplied on disposable drums. The standard packaging units are:

POF	250 m and 500 m for twisted cables;
	500 m for non-twisted cables;
	500, 1000, 2000 and 5000 m for buffered fibers
PCF	2000 m

Special cables on request.

Standard wooden reels

Туре	Flange dia.	Core dia.	Total width	Layer width	Spool weight	Load-bearing capacity
	mm	mm	mm	mm	approx. kg	max. kg
KT081	800	400	520	400	31	400
KT101	1000	500	710	560	71	900
KT121	1250	630	890	670	144	1700
KT141	1400	710	890	670	175	2000
KT161	1600	800	1100	850	280	3000
KT181	1800	1000	1100	840	380	4000
KT201	2000	1250	1350	1045	550	5000
KT221	2240	1400	1450	1140	710	6000
KT250	2500	1400	1450	1140	875	7500

On request, we also supply fiber optic cables on the following disposable drums: **Disposable drums (wooden)**

Туре	Flange dia.	Core dia.	Total width	Layer width	Hole	Spool weight
	mm	mm	mm	mm	mm	approx.kg
K3000	300	212	103	90	51	0.7
H5001	500	400	116	100	46	3.5
H5005	500	312	331	315	80	3.7
H6007	600	312	335	315	80	5.0
H6008	600	312	410	390	80	4.6
H7601	760	312	415	390	80	8.5
H7603	760	470	544	520	80	12.0
H1001	1000	500	590	560	80	15.0
G1001	1000	540	650	550	80	49.0
G1201	1000	630	840	745	80	74.0
G1401	1400	800	840	745	80	193.0
G1601	1600	1000	1050	930	80	240.0
G1801	1800	1000	1110	1000	85	300.0

Installation service

Assistance on site

In addition to the well-known scope of the LEONI range, our experienced installation team provides the following services using state-of-the-art technology:

- Assembly of all types of connectors (ST, FC, SMA, HP, F05/F07, etc.)
- Installations inside and outside Germany (new installations and repairs)
- Cable laying and splicing
- Measurement analyses

If you have experienced cable and connector failures in your network, we are also happy to analyse them and design simple, cost-effective solutions on site.

Our global presence

Service & Index

308

Close proximity to the customer is a key component of our corporate philosophy. For that reason LEONI is always close at hand, wherever you are in the world. Take advantage of our extensive sales network.

Corporate head office

GERMANY

LEONI Fiber Optics GmbH Mühldamm 6 96524 Neuhaus-Schierschnitz Germany Tel.: +49 (0)36764-81-100 Fax: +49 (0)36764-81-110 fiber-optics@leoni.com

Any country not listed falls under the responsibility of corporate head office.

Europe

NETHERLANDS

Regional Office Joeri Van Bogaert **LEONI WCS Benelux BV** Siliciumweg 31 3812 SV Amersfoort, Niederlande Phone +31 (0)33-43 28 007 Telefax +31 (0)33-46 19 228 j.vanbogaert@leoni.com

Regional Representative Guy Colman

Cynerpro NV Laagstraat 65 9140 Temse, Belgium Phone +1 480 993-2143 guy.colman@cynerpro.be

Lilli Winnicki **LEONI Fiber Optics GmbH** Dyrlägegaards Alle 174 3600 Frederikssund, Denmark Phone +45 40 15 04 00 lilli.winnicki@leoni.om

Imke Küster LEONI CIA Cable Systems S.A.S. 1, Avenue Louis Pasteur Z. I. de Gellainville 28630 Gellainville Phone +33 (0)977-05 77 40 imke.kuester@leoni.com

Frank Gumm **LEONI Fiber Optics GmbH** Simmerner Straße 7

55442 Stromberg, Germany Phone +49 (0)6724-607-132 +49 (0)6724-607-100 Fax frank.gumm@leoni.com

20019 Settimo Milanese Phone +39 (0)233-55501 Fax +39 (0)233-512203 gpicchi@unifibre.it

Phone +386 (2)3338-754 +386 (2)3338-757 Fax Ales.Strazar@Optisis.si

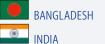
Regional Manager Lars Leininger, Ph. D. LEONI Fiber Optics GmbH Nalepastr. 170-171 12459 Berlin, Germany Phone +49 (0)30 5300-5812 +49 (0)30 5300-5858 Fax lleininger@fibertech.de

Regional Representative Ales Strazar Optisis d.o.o. Avtomibilska ulica 17 1001 Ljubljana

North America

+ CANADA Regional Representative

Rafal Pawluczek, Jeff Dupuis FiberTech Optica Inc. 330 Gage Avenue, Suite 1 Kitchener, Ontario N2M 5C6 Phone +1 519-745-2763 Fax +1 519-342-0128 rpawluc@fto.ca jeffdup@fto.ca



Regional Manager Armin Kaus, Ph. D. FiberTech Inc. USA 5070 S. Gilbert Road, Suite 100 Chandler, AZ 85249 Phone +1 480 993-21-43 +1 480 892-45-38 Fax a.kaus@us-fibertech.com

Asia & Pacific

Ruth Roberts **Device Technologies Australia** 10/59 Main North Road Medindie SA 5081 Phone +61 (08)8111-4900 +61 (08)8111-4901 Fax rroberts@device.com.au

SRI LANKA Regional Manager Pravin Narayan LEONI Special Cables (India) . Pvt. Ltd.

A-405, Galleria Hiranadani Gardens Powai Mumbai - 400076, India Phone +91 (22) 4005-66-44 +91 (22) 4005-66-45 Fax +91 (22) 4005-66-46 pravin.narayan@lsc.leoni.com

SINGAPORE Regional Office Max Ong **LEONI Special Cables GmbH** 28, Gul Avenue Singapore 629668 Phone +65 6844-8722 +65 6741-8722 Fax max.ong@lsc.leoni.com

Regional Manager William Fang, Anthem Zao LEONI Special Cables Co. Ltd. Room 707 Aetna Mansion, No. 107 Zunyi Road, Changning Area 200051 Shanghai, China Phone +86 21 237 5569 +86 21 6237 5589 Fax william.fang@leoni.com anthem.zhao@leoni.com

LAOS

MYANMAR

THAILAND

VIETNAM Regional Office

Frank Wagner, Judono Soekendra **LEONI Special Cables GmbH** S. Widjojo Center, 10th floor Jl. Jendral Sudirman No. 71

Jakarta 12190, Indonesia Phone + 62 21-526 - 5767 + 62 21-526-4340 Fax frank.wagner@lsc.leoni.com soekendra.judono@lsc.leoni.com

Regional Representative Jojiro Kimura Opto Science, Inc. Tokyo Office Naitocho Bldg., 1, Naitocho, Shinjuku-ku Tokyo 160-0014 Phone +81 3-3356-1064 +81 3-3356-3466 Fax kimura@optoscience.com

Regional Representative Koichiro Sakamoto Opto-Works Co., Ltd 8F-5 Shatore-Gotanda 4-10-9 Higashigotanda, Shinagawa-Ku Tokyo 141-0022 Phone +81 3-3445-4755 +81 3-6479-8044 Fax sakamoto@opto-works.co.jp

Regional Representative Kotomi Shimada

CORNES DODWELL LTD.

Cornes House, 13-40 Nishi Honmachi 1-chome, Nishi-ku Osaka 550-0005 Phone +81 6-6532-1012 +81 6-6532-7749 Fax shimadak@cornes-dodwell.co.jp

Fax

Regional Representative James Chen JIMCOM Co. Ltd. 6F-1, No. 159, Sec.1 Hsin Tai Wu Rd. HsiChih City Taipei Hsien 221 Phone +886 2-2690 2318

Regional Representative Terry Huang Smartech Medical Co. Ltd. No 66–1, Chaufu Rd., Shituen Chiu Taipei 40757 Phone +886 4225-48026 Fax +886 4225-48028 smart ech@msa hinet net

+886 2-2690 2378 jimcom@ms19.hinet.net

Introduction to fiber optics

2

2

3

4

5

LEONI Cable expertise for a wide variety of industrial markets. Fiber Optics business unit Our areas of expertise.

Value chain – from the preform to the complete fiber optic system. Our sites

- -----

Glass Fiber Cables singlemode/multimode fibers

Fiber specifications	8
Optical buffered fibers	10
The right buffered fiber for every application	11
Handling and safety notices	12
Buffer tube and jacketing material	13
Type designations for optical cables	14
Fiber colour code for multi-fiber loose tubes	15
Standards	15
Pictograms	16
Industrial cables	17
Office cables	29
Outdoor cables	38
FTTH	59
Marine cables	63
Military cables	66
Optical cables with UL approval	70
Order number scheme	77
Glass fiber assembly	78
Heavy trunk	80

POF Polymer optical fibers

Overview	83
POF fiber specifications	84
POF cables	86
LEONI Dacar® FP automotive cables	98
POF connectors	102
POF couplings	107
Pre-assembled POF cables	108
POF position switch	109
Order number scheme for POF cable assembly	109

PCF Polymer cladded fibers	
Overview	111
PCF fiber specifications	112
PCF cables	116
PCF connectors	122
PCF couplings	127
Pre-assembled PCF cables	128
Order number scheme for PCF cable assembly	129
Easy Pull cabling system	130

Large-core Special Fibers	132
Overview	133
UV-VIS fiber specifications	134
VIS-IR fiber specifications	136
HPCS and PCS fibers	139
HPCS fiber specifications	140
PCS fiber specifications	141
ASB fibers (solarisation-stable fibers)	142
MIR and FIR fibers	143
Capillaries	144
Connectors for thick-core fiber assemblies	145
Connectors with standard metal or ceramic ferrules	146
Couplings	147
Examples of cable constructions	148
Assembling thick-core special fibers	152
Type designation for pre-assembled thick-core fibers	153

Singlemode 154 Special Fibers

Overview	155
Fiber specifications	156
Polarisation-maintaining fiber specifications	158
Measurements on singlemode special fibers	160
Cables with singlemode special fibers	162
Pre-assembled cables with singlemode special fibers	166
Connectors for singlemode special fibers	167
Couplings for singlemode special fibers	168

Fiber Bundles

_

Overview	171
Fiber bundles (silica/silica)	172
Fiber bundles (optical glass/optical glass)	174
Assembly of fiber optic bundles	178

170

Overview	181
Laser probes	182
Handpieces	188
Accessories	189
Type designations for laser probes	190

Tubes	192
Overview	193
Tubes	194
Plastic tubes	201

Optical Components 20

Overview	203
Optical components	204
Fiber arrays for singlemode and multimode applications	210
Singlemode splitters for FTTX	214
and special applications	
Order number scheme	219
for optical splitters	215
Splitter modules, slots and trays	220
Optical switches for singlemode	222
and multimode applications	222
Order number scheme	220
for optical switches	229

Support	230
Overview	231
Strippers	232
Crimp and cleave tools	233
Tools for fiber end face treatment	234
Measuring devices	236
Fiber optic assembly kits	240

Principles of fiber o		244
		0.45

1. Optical waveguides in general	245
2. Fiber types	248
3. Cables	259
Flammability and fire propagation	267
Smoke density	275
Toxicity of the combustion gases	276
Corrosiveness of the combustion gases (absence of halogen)	277
Abbreviations of standards	278
4. Fiber bundles	279
5. Planar waveguides	281
Physical definitions and formulae	282
Definition of terms	287
Abbreviations	295

Books Reference literature

DWDM – Dichtes Wellenlängenmultiplex		
[DWDM - Dense Wavelength Division	298	
Multiplexing]		
Lichtwellenleiter-Technik	298	
[Fiber Optics]		
Plastic Optical Fibers	299	
POF Handbook	299	
Leitfaden Fiber Optic	300	
[Fiber Optics Guidebook]		
Messtechnik Fiber Optic	300	
[Fiber Optic Measuring Techniques]		
Messtechnik Fiber Optic		
[Fiber Optic Measuring Techniques]	301	
Teil 1: Rückstreumessung	301	
[Part 1 - Backscattering Measurement]		
Messtechnik Fiber Optic		
[Fiber Optic Measuring Techniques]		
Teil 2: Elementare Messverfahren	301	
[Part 2 - Elementary Measuring		
Techniques]		

Service & Index	302
Quality management	303
Environmental management	304
Quality assurance	305
Packaging units	306
Installation service	307
Our global presence	308

LEONI Fiber Optics GmbH

Mühldar Minible Schierschnitz 96524 Neuhaus-Schierschnitz Germar Phone +49 (0)36764-81-100 Fax +49 (0)36764-81-110 E-mail fiber-optics@leoni.com